首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the further development of the quantitative theory of critical detonation diameter that was earlier proposed by the author. According to this theory, to calculate the critical diameter, it is necessary to know the shock adiabat, detonation velocity, and the generalized kinetic characteristic of decomposition of a high-explosive (HE) charge under shock-wave compression. It is suggested that the generalized kinetic characteristic of decomposition of a HE can be found from an experimental dependence of the shock-wave amplitude on the distance the shock wave travels during shock-wave initiation of the HE charge. This approach allows one to calculate the critical detonation diameters of HE charges with sufficient accuracy. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 2, pp. 112–115, March–April, 2006.  相似文献   

2.
Research problems arising in the development of various devices with the use of detonation in a controlled frequency mode (pulsed detonation) are considered. The frequency of cycles can be varied by independent initiation of detonation by a controlled system of ignition. Problems of detonation initiation concerning the frequency mode are considered: direct initiation, deflagration-to-detonation transition, and transition of a detonation wave formed in a narrow channel into a wide channel. The possibility of using thermochemical conversion in devices with pulsed detonation is considered. Examples of practical applications of devices with pulsed detonation are given (pulsed detonation engine, using pulsed detonation for drilling and crushing of rocks, and removal of metal cord from rubber in worn tires).  相似文献   

3.
The factors influencing initiation of detonation in gap tests for liquid explosives are investigated experimentally. A calibrated donor charge (nitromethane) and PMMA attenuator disk arrangement are used to transmit shocks of known strength (2–10 GPa) into a test explosive of nitromethane sensitized with 5% diethylenetriamine. The test explosive is contained in capsules of different wall materials (PVC, Teflon, aluminum), and the dimensions of the charges vary from 25 mm to 100 mm in diameter. For the small‐scale charges, the presence of the confining wall of the test capsule is seen to have a pronounced effect on the detonation initiation. Certain wall materials (PVC, Teflon) exhibit a multi‐valued critical gap thickness, meaning that a weaker shock may result in initiation while a stronger shock does not. The effect of the wall materials could not be correlated with their acoustic or shock impedance, and the only way to eliminate these effects was to make the diameter of the test charge larger than the donor charge. When the size of the donor charge was increased, the critical pressure required for initiation decreased. These results could be correlated to “ideal” shock initiation experiments that use flyer plates as shock sources assuming that lateral rarefactions quench detonation initiation if they reach the central axis of the charge before the onset of detonation is complete.  相似文献   

4.
Shock initiation is one of the most important properties of energetic materials, which must transition to detonation exactly as intended when intentionally shocked and not detonate when accidentally shocked. The development of Manganin pressure gauges that are placed inside the explosive charge and record the buildup of pressure upon shock impact has greatly increased the knowledge of these reactive flows. This experimental data, together with similar data from electromagnetic particle velocity gauges, has allowed us to formulate the Ignition and Growth model of shock initiation and detonation in hydrodynamic computer codes for predictions of shock initiation scenarios that cannot be tested experimentally. An important problem in shock initiation of solid explosives is the change in sensitivity that occurs upon heating (or cooling). Experimental Manganin pressure gauge records and the corresponding Ignition and Growth model calculations are presented for two solid explosives, LX-17 [92.5% triaminotrinitrobenzene (TATB) with 7.5% Kel-F binder] and LX-04 [85% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) with 15% Viton binder] at several initial temperatures. __________ Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 6, pp. 181–192, November–December, 2005.  相似文献   

5.
Multiphase cloud detonation is an important but complex process, which has not been fully understood yet. Direct experimental data about the critical initiation energy (CIE) and pressure/velocity revolution of high explosive powder‐based multiphase cloud detonation is not available in the literature. In this paper, propylene oxide (PO), petroleum ether (PE), isopropyl nitrate (IPN), and a mixture of PE/IPN were individually dispersed to form a cloud in a 200 mm×5400 mm vertical detonation tube. Subsequently, this cloud was directly ignited by a high explosive. The critical initiation energy of various mist/air mixtures was measured by the up and down method. Meanwhile, the pressure history was recorded by six sensors along the detonation tube. RDX powder was added to the system and sprayed simultaneously with the liquid fuel to form a three‐phase gas‐liquid‐solid explosive cloud. The detonation pressure and velocity of all three‐phase cases significantly increased while the corresponding critical initiation energy decreased compared to the liquid‐air analogs. The CIE data were found to have a “U”‐shaped curve relationship to the fuel‐air ratio in two‐ and three‐phase systems, the minimum is always on the fuel‐rich side.  相似文献   

6.
固体炸药冲击起爆尺寸效应的数值模拟   总被引:2,自引:1,他引:2  
固体炸药样品的装药尺寸对其冲击起爆的特性有着比较明显的影响,本文利用非线性有限元方法模拟计算了JO-9159炸药冲击起爆过程,分析了炸药冲击起爆过程的尺寸效应,结果表明,在一定范围内,JO-9159炸药的起爆力阈值随装直径和装药长度的增大而减小。  相似文献   

7.
为进一步提高偏心起爆定向战斗部的毁伤效能,在序贯起爆方式的基础上提出了4种线内非同步起爆方案,通过LS-DYNA仿真和求解破片外弹道方程,研究了线内起爆顺序、起爆延时和起爆线数目对军用车辆毁伤效能的影响。结果表明,通过调整线内起爆时序可以对破片轴向抛射角进行分段控制,4种线内非同步起爆方案均能有效提高毁伤效能;最佳起爆方案为偏心两线方案Ⅲ(自战斗部中下部的起爆点向两端依次起爆),起爆延时为1/2倍的相邻起爆点间传爆时间;相对于端面中心单点、偏心两线同时和偏心两线序贯起爆,该起爆方案下最大毁伤面积的增益分别为34.1%、24.7%和23.4%,且对战斗部炸点高度不敏感。  相似文献   

8.
Correlation dependences between the critical diameter of high explosive (HE) charges and characteristics of their shock-wave sensitivity are theoretically justified. Relations for the critical radius of curvature of the detonation-wave front and for the critical detonation diameter are derived on the basis of the author’s theory of the critical diameter and the generalized kinetic characteristic of HE decomposition determined from the experimental dependence of the distance of transition of the initiating shock wave to the detonation wave on the wave amplitude. A qualitative analysis of these relations reveals good agreement with available experimental data. Key words: detonation, critical diameter, sensitivity, shock-wave initiation of detonation, HE decomposition kinetics. __________ Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 3, pp. 101–105, May–June, 2009.  相似文献   

9.
固体炸药冲击起爆研究   总被引:5,自引:2,他引:3  
为了研究固体炸药冲击起爆特性,对JO-9159炸药进行了隔板冲击加载实验,用高速摄影方法记录炸药冲击起爆过程;用解析计算方法分析了有机玻璃隔板的临界厚度值;建立了炸药冲击起爆模型,对起爆过程进行了数值模拟,计算了炸药在冲击作用下的压力历史,分析了JO-9159炸药起爆压力阈值和爆轰成长距离。  相似文献   

10.
Initiation of bubble detonation in the system “inert liquid-explosive gas bubbles” by a detonation wave in a gas was studied experimentally. Compression-wave pressure profiles were determined as functions of the length of the initiation section and the initial pressure of the explosive gas mixture in it. It was shown that because of the effect of the explosive-gas volume between the diaphragm and the upper boundary of the bubble medium, the pressure in front of the initiating wave increased much more slowly than the initial pressure. The optimal length of the initiation section was found, and the critical (minimum) initiation pressure in it and at the shock-wave front were determined. It was found that for a fixed gas volume concentration in the bubble medium, the pressure in the initiation section increased insignificantly as the length of the section decreased. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 2, pp. 84–90, March–April, 2007.  相似文献   

11.
The important role of the shape of the front during detonation wave propagation in gas mixtures was substantiated by K. I. Shchelkin during construction of the theory of spinning detonation. Subsequently, a unique relationship between the curvature of the front and detonation wave parameters has been repeatedly confirmed in experiments, including for condensed high explosives (HEs). The existence of this relationship formed the basis of the theory of the dynamics of the detonation front which had been developed by the end of the 20th century. This paper presents the results of a study of detonation front propagation in cylindrical samples of a low-sensitivity HE of different diameters with one-point and plane-wave initiation. A unique relationship between the detonation velocity and the curvature of the detonation wave front has been found. Ordinary differential equations describing two-dimensional steady-state detonation front profiles for HE charges in the form of a plate, a cylinder, and a ring were derived assuming that the detonation velocity depends on the curvature of the front. It was taken into account that the boundary angle between the normal to the front and the HE edge is unique for each combination of HE and liner material. It was found that the same detonation front profile corresponds to several combinations of liner material and the determining size of the charge (plate thickness, radius of the cylinder or the inner radius of the ring). A comparison of experimental front profiles near the edges of HE charges for these combinations provides data on the dependence of detonation velocity on the curvature of the front at low velocities corresponding to shock-induced detonation regimes. Analysis of previously obtained data for detonating ring charges of low-sensitivity HEs shows that as the detonation velocity decreases, the total front curvature tends to a limit of about 0.05 mm−1, i.e., of the order of the inverse critical diameter. The limit of the front curvature allows predicting the critical detonation diameter.  相似文献   

12.
The explosive decomposition of heavy metal azides initiated by a laser pulse was studied experimentally over a broad range of action levels (from the threshold values to those exceeding the threshold ignition energy by a factor of 100) and in the time interval including the induction period, and rapid explosive decomposition, and the expansion of detonation products. The explosive glow and expansion dynamics of the decomposition products in air and vacuum were investigated, and the velocities of the explosive decomposition front, the compression pulse, and the expansion of the explosion products were measured. Based on the results obtained, the possibility of the occurrence of preexplosion phenomena is discussed and the mechanism of laser initiation of heavy metal azides is analyzed. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 1, pp. 106–119, January–February, 2006.  相似文献   

13.
A physical model for the macrokinetics of shock-wave initiation of detonation in plastic-bounded TATB-based explosive is proposed that is based on the assumption of electronic energy transfer from hot spots. Results of numerical modeling of experiments on shock-wave initiation of detonation of LX-17 are presented. __________ Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 5, pp. 117–126, September–October, 2006.  相似文献   

14.
隔层传爆序列可靠性评估的试验方法   总被引:1,自引:0,他引:1  
通过分析影响隔层传爆序列爆轰传递性能的各个可能因素,结合隔层传爆序列的特点,提出了一种评估爆轰传递可靠性的试验方法。采用该方法对某传爆序列起爆主炸药的可靠性进行了评估,获得了较满意的结果。这些分析结果及可靠性评估试验方法为隔层传爆序列的设计及可靠性评估提供参考。  相似文献   

15.
FOX-7和RDX基含铝炸药的冲击起爆特性   总被引:1,自引:0,他引:1  
为研究FOX-7和RDX基含铝炸药的冲击起爆特性,对其进行了冲击波感度试验和冲击起爆试验,结合冲击波在铝隔板中的衰减特性,确定了FOX-7和RDX基含铝炸药的临界隔板值和临界起爆压力,并通过锰铜压阻传感器记录了起爆至稳定爆轰过程压力历程的变化。结果表明,以Φ40mm×50mm的JH-14为主发装药时,FOX-7和RDX基含铝炸药临界隔板值分别为37.51和34.51mm,对应的临界起爆压力为10.91和11.94GPa;起爆压力为11.58GPa时,FOX-7炸药的到爆轰距离为25.49~30.46mm,稳定爆轰后的爆轰压力为27.68GPa,爆轰速度为8 063m/s;起爆压力为14.18GPa时,RDX基含铝炸药的到爆轰距离为17.27~23.53mm,稳定爆轰后的爆轰压力为17.16GPa,爆轰速度为6 261m/s。  相似文献   

16.
This paper presents the results of a sensitivity analysis of the diffusion-based corrosion initiation model for reinforced concrete structures built in chloride-laden environments. Analytical differentiation techniques are used to determine the sensitivity of the time to corrosion initiation to the four governing parameters of the model, which include chloride diffusivity in concrete, chloride threshold level of steel reinforcement, concrete cover depth, and surface chloride concentration. For conventional carbon steel, the time to corrosion initiation is found to be most sensitive to concrete cover depth, followed by chloride diffusion coefficient, with normalized sensitivity coefficients of about 2 and − 1. For corrosion resistant steels, the time to corrosion initiation is most sensitive to the surface chloride concentration and chloride threshold level followed by the concrete cover depth and chloride diffusion coefficient. The results of this sensitivity analysis are discussed in detail, including the variations in predicted time to corrosion initiation induced by variations of the four model parameters and their implications for the design and maintenance of concrete structures built in corrosive environments.  相似文献   

17.
A model of shock-wave heating of condensed high-explosives (HE) in which a refined dependence of the heat capacity of an HE on temperature is used and the effect of the initial density of the HE is taken into account is given. The dependences of HE (TNT, PETN, and TATB) heating on pressure in the shock-wave front are calculated. Modeling of TATB heating is of interest for understanding the shock-wave detonation initiation, including the dependence of the shock-wave sensitivity on the initial density and temperature of an HE. Translated fromFizika Goreniya i Vzryva, Vol. 36, No. 2, pp. 94–99, March–April, 2000.  相似文献   

18.
Initiation of detonation in flows of fuel-air mixtures   总被引:2,自引:0,他引:2  
Regimes of self-ignition of the fuel mixture obtained by controlled separate injection of hydrogen and air into a plane-radial vortex chamber with a rapid (0.2 msec) transition to detonation have been realized for the first time. Self-ignition occurs in the stoichiometric region with a slightly higher (up to 6–30%) content of hydrogen and, normally, in a subsonic flow. The energy of guaranteed detonation initiation is determined for combustors of different geometries and different ratios of fuel components by using a thermal pulse produced by blasting a wire by electric current. Detonation initiation is ensured by using energy of 0.1 J. It is found that the main contribution of energy into the flow of the mixture occurs at the stage of evaporation (ionization) of copper of the blasted wire. The continuous spin detonation regime is found to decay as the exit cross section of the combustor is reduced. In the regime of combustion, both detonation and conventional turbulent combustion, the pressure at the periphery of the plane-radial vortex chamber is lower and the pressure at the edge of the exit orifice is higher than that in the case of exhaustion of cold fuel components. __________ Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 3, pp. 110–120, May–June, 2007.  相似文献   

19.
基于聚黑(JH)-14C传爆药的小隔板试验方法及结果,建立了小隔板试验有限元模型并进行了模拟计算,确定了密度为1.65g/cm~3时JH-14C的Lee-Tarver参数。以RDX-8701为主发药柱,对实际装药条件下JH-14C的传爆装置进行了冲击起爆实验,得到了钢鉴定块的凹坑深度。根据小隔板试验确定的JH-14C传爆药Lee-Tarver参数,建立了全尺寸的冲击起爆实验有限元模型,并对比分析了模拟结果与实验结果,通过改变导爆药柱顶部的钢隔板厚度,确定了JH-14C的传爆装置发生冲击起爆的临界钢隔板厚度。结果表明,冲击起爆实验中钢鉴定块的凹坑深度约为2.1mm,模拟计算结果与实验结果基本吻合;JH-14C的传爆装置冲击起爆的临界钢隔板厚度在4~5mm。  相似文献   

20.
Hexanitrohexaazaisowurtzitane (CL‐20) is a high‐energy material with high shock sensitivity. The evolution of shock into the detonation of CL‐20 deserves academic attention and research. An embedded electromagnetic particle velocity gauge was used to study the shock initiation of detonation in a pressed solid explosive formulation, C‐1, containing 94 wt‐% epsilon phase CL‐20 and 6 wt‐% fluororubber (FPM). In conventional experiments, the magnetic field was generated using a pair of electromagnets with a complex structure and operation. A new device was designed to solve complex problems. This device comprised NdFeB magnets, pole shoes and magnetic yokes; using this technique, a uniform magnetic field could be created. A series of shock initiation experiments on high‐explosive C‐1 was performed, and the explosive samples were initiated at different intensity input shocks by an explosive driven flyer plate. In situ magnetic particle velocity gauges were utilized to detail the growth from an input shock to detonation, and the attenuation of particle velocity in unreacted C‐1 was also obtained in low‐intensity shock initiation experiments. Hugoniot data for C‐1 in the form of shock velocity D vs. particle velocity Up were obtained. A simulation model for shock initiation of C‐1 was established, and the particle velocity data from several experiments were used to determine the parameters required for the unreacted equation of state and ignition and growth reactive flow model for C‐1. These coefficients were then applied in the calculation of the initial shock pressure−distance to detonation relationship (Pop‐plot) for the explosive. Based on the results of experiments and simulations, the shock sensitivity characteristic of C‐1 was described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号