首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
RTM工艺树脂流动过程数值模拟及实验比较   总被引:8,自引:5,他引:3       下载免费PDF全文
树脂充模是RTM工艺成型过程中的重要一环。研究了RTM工艺树脂流动过程的特点,建立了树脂渗流控制方程。采用贴体坐标/有限差分法模拟了树脂渗流过程,给出了不同时刻树脂流动前沿曲线及终止时刻压力场分布,计算结果与试验结果吻合良好。  相似文献   

2.
视窗化RTM工艺充模过程模拟仿真技术研究   总被引:11,自引:6,他引:5       下载免费PDF全文
根据RTM工艺树脂流动充模模型,研究和开发了基于FEM/CV算法的RTM工艺复杂渗流充模过程数值模拟软件平台-BHRTM-2。BHRTM-2在视窗系统下运行,带有FEM网格捕捉器窗口可直观方便地设置注射口、溢料口和工艺参数,操作简单,能够模拟复杂边界制件的树脂流动充模过程、显示充模过程中任意时刻模腔内压力的分布场、流动前峰和预测充模时间及可能的干斑缺陷位置,为RTM工艺设计与优化提供了有效技术手段。文中对BHRTM-2的模拟结果的正确性和可靠性进行了理论与实验验证,并给出了具体算例。   相似文献   

3.
针对基于Darcy定律的树脂传递模塑(RTM)工艺的充模过程数值模拟的局限性,将纤维预制体内的充填流动作为两相流(树脂相和空气相)处理,在动量方程中考虑了惯性项和粘性项,采用有限体积方法(FVM)离散控制方程,并与VOF/PLIC界面追踪方法相结合,发展了求解树脂在纤维预制体内非稳态流动问题的数值模拟方法.在此基础上开发了RTM工艺的充模过程数值模拟程序,其算例的数值模拟结果与解析解或实验结果吻合良好,验证了此数值模拟方法的有效性和可靠性.  相似文献   

4.
以典型车身结构B柱为研究对象,结合实验与仿真分析研究其树脂传递模塑(RTM)工艺的优化设计方法。研究了通过注射方式的优化控制树脂流动前沿,从而达到降低制件孔隙率和保证制件质量的目的。首先通过自制的变厚度渗透率测试模具获取所选用织物的渗透率,之后通过真空辅助RTM实验与对应模拟仿真进行对比分析来验证所采用仿真方法与渗透率数据的可靠性。最后结合充模周期与孔隙率控制理论对RTM工艺注射口分布及注射方式进行优化设计。结果表明,针对所选定车身结构,优化速率注射方式所获得的制件孔隙率最低,但充模周期较长,而基于双点注射的恒流量注射方式能较好地兼顾充模周期与制件孔隙率的要求。  相似文献   

5.
RTM工艺参数对树脂充模过程影响 的模拟与实验研究   总被引:12,自引:9,他引:3       下载免费PDF全文
通过开发计算机程序与有限元/控制体积分析软件,能够实现对任意复杂三维形状复合材料构件的造型和RTM工艺充模过程的模拟。研究了改变工艺参数时工字孔平板的RTM工艺模拟结果和实验结果,两者基本保持一致;证明了恒压注射情况下,充模时间与注射压力、渗透率成反比,与树脂粘度成正比;也证实了该模拟软件确实可用于预测树脂流动模式以及成型效率,为RTM实际工艺设计与优化提供了有效的技术手段。   相似文献   

6.
RTM工艺树脂注射温度优化   总被引:2,自引:1,他引:1       下载免费PDF全文
在RTM 工艺模拟及RTM 工艺专用树脂黏度特性研究的基础上, 提出充模时间与安全系数的乘积小于树脂低黏度平台时间的树脂注射温度优化标准和充模时间、树脂低黏度平台时间的计算方法, 制定了程序化流程并编制了软件, 使优化得以实施。在此基础上, 选取Q Y8911-Ⅳ双马树脂对所选制件进行模拟充模作为注射温度优化的实例, 确定了树脂低黏度平台时间的变化范围, 得到了不同条件下的优化注射温度。优化实例表明, 优化软件可实现对树脂注射温度的优化。   相似文献   

7.
树脂膜熔渗工艺(RFI)是一种新型的复合材料成型工艺.为了更深入了解树脂膜熔渗工艺过程中充模阶段的控制参数对制品质量的影响,避免制品出现空斑、充模不完全等问题,针对该工艺过程中树脂在复杂形状预制件中的流动行为进行了分析,在达西定律基础上建立了二维等温流动控制方程,利用有限元/控制体方法建立了数值分析模型,编制了FORTRAN程序进行模拟运算,并讨论了流动过程中施加的压力对充模时间的影响.由计算实例可见,所编制程序能够很好地预测树脂膜熔渗工艺过程中充模时间、各个时刻树脂的流动前沿位置及模腔中的压力分布.  相似文献   

8.
RTM 工艺充模过程数值模拟及实验比较   总被引:14,自引:7,他引:7       下载免费PDF全文
树脂传递模塑(RTM ) 工艺越来越成为一种高效的先进纤维增强复合材料的制造方法, 其中RTM 的充模过程是一个很重要的步骤。本文对增强材料各向异性的二维RTM 充模过程进行数值模拟, 并把数值模拟结果和实验结果相比较。   相似文献   

9.
对复合材料与金属经缝合连接形成的夹层结构板的树脂传递模塑成型(RTM)工艺进行了充模模拟研究。首先通过实验和数值计算的方法,分别获得缝合夹层结构织物和芯层孔洞的渗透率;随后,建立能够反映缝孔内流动情况的二维和三维简化模型,进行RTM充模仿真,讨论不同工艺参数对成型流动的影响;最后通过成型实验验证工艺的可行性。缝线与孔洞直径之比为0.3~0.8时,孔洞渗透率随缝线直径的增大而减小,预制体织物渗透率与孔洞渗透率相差两个数量级;缝孔内容易产生缺陷,没有缺陷的区域随着注射压力的增加、孔洞密度和芯层厚度的减小而增大,在芯层表面沿每排孔洞单向开槽能够改善树脂在孔洞内的浸润;线注射时,树脂整体流动情况优于点注射,而点注射时,将进胶口设置在一角,能够减少表面干斑。  相似文献   

10.
为优化复杂预成型体结构的液体成型工艺,基于有限元法/生死节点法模拟了复合材料液体模塑成型过程树脂流动,并针对典型矩形平板、圆板结构、I型加筋壁板充模过程进行了仿真与验证。结果表明:典型矩形平板和圆板结构的充模过程模拟结果与理论解一致性较好,验证了生死节点法跟踪树脂流动前锋的有效性。含有方腔的变厚度圆柱体和正方体三维实体结构的充模过程模拟验证了有限元方法对三维结构的适用性。基于有限元法/生死节点法的液体充模过程模拟方法对于复杂求解区域具有更好适应性,可用于复杂实体结构的液体模塑成型工艺过程树脂流动规律预测、指导模具设计及工艺优化。   相似文献   

11.
《Composites Part A》2007,38(6):1547-1568
To prevent dry spot formation during fabrication of composite parts by Resin Transfer Molding (RTM), a control interface and four different adaptive control algorithms have been developed and tested with numerical simulations. The interface is capable of controlling the flow pattern of resin as it fills a mold containing a preform of fiber reinforcement, provided that the mold is equipped with multiple inlet gates, a single vent and a spinal sensor system that continuously feeds the interface with the resin flow front locations along the spine lines connecting the inlet gates to the vent. Four different adaptive control algorithms targeting on injection flow rate control, injection pressure control, linearly-corrected pressure control, and the combined flow rate and linearly-corrected pressure control have been proposed and incorporated with the control interface. To provide desirable controllability of the filling process and effective utilization of the resin dispensing equipment, the final formulations were optimized by means of numerical simulations of a rectangular RTM part containing different permeability distributions. The results were compared to investigate the strengths and weaknesses of the spinal adaptive control algorithms in terms of dry spot size, filling speed, and the minimum responding speed of injection pump. Finally, a complex geometry case study was conducted to validate and highlight the spinal adaptive control algorithms’ capability in handling flow disturbance for a complex RTM mold filling process which involves irregular mold geometry, multiple inserts, significant permeability and racetracking variations, and non-straight spinal sensors.  相似文献   

12.
A new methodology is presented to simulate mold filling in resin transfer molding (RTM) using a combination of the level set and boundary element methods (BEMs). RTM is a composite manufacturing process where a liquid resin is injected in a closed rigid mold containing a dry fibrous reinforcement. Process simulation is motivated by the importance of tracking accurately the motion of the flow front during the mold filling stage. The BEM solves the equation governing the resin flow and the level set method is implemented to track the resin front in the mold. This formulation opens up new opportunities to improve RTM flow simulations and optimize injection molds. The present paper focuses on isothermal resin flow in undeformable porous medium. The implementation of the numerical algorithm is described and several examples of two-dimensional filling with single or multiple injection gates are presented. The robustness of the coupling and the ability to predict accurately the position of the front by this new model are discussed. It is also shown how dry spot formation can be tracked precisely during the simulation and how a generalization of this approach allows predicting resin flow across obstacles.  相似文献   

13.
This paper addresses the numerical simulation of void formation and transport during mold filling in Resin Transfer Molding (RTM). The saturation equation, based on a two-phase flow model resin/air, is coupled with Darcy’s law and mass conservation to simulate the unsaturated filling flow that takes place in a RTM mold when resin is injected through the fiber bed. These equations lead to a system composed of an advection–diffusion equation for saturation including capillary effects and an elliptic equation for pressure taking into account the effect of air residual saturation. The model introduces the relative permeability as a function of resin saturation. When capillary effects are omitted, the hyperbolic nature of the saturation equation and its strong coupling with Darcy equation through relative permeability represent a challenging numerical issue. The combination of the constitutive physical laws relating permeability to saturation with the coupled system of the pressure and saturation equations allows predicting the saturation profiles. The model was validated by comparison with experimental data obtained for a fiberglass reinforcement injected in a RTM mold at constant flow rate. The saturation measured as a function of time during the resin impregnation of the fiber bed compared very well with numerical predictions.  相似文献   

14.
Numerical simulation of resin transfer molding (RTM) is known as a useful method to analyze the process before the mold is actually built. In thick parts, the resin flow is no longer two-dimensional and must be simulated in a fully three-dimensional space. This article presents numerical simulations of three-dimensional non-isothermal mold filling of the RTM process. The control volume/finite element method (CV/FEM) is used in this study. Numerical formulation for resin flow is based on the concept of nodal partial saturation at the flow front. This approach permits to include a transient term in the working equation, removing the need for calculation of time step to track the flow front in conventional scheme. In order to compare the results of the nodal partial saturation concept with the conventional method, a numerical scheme based on the quasi-steady state formulation is also presented. The computer codes developed based on both numerical formulations, allow the prediction of flow front positions; and pressure, temperature and conversion distributions in three-dimensional molds with complicated geometries. The validity of the two schemes is evaluated by comparison with analytical solutions of simple geometries. In all instances excellent agreement is observed. Numerical case studies are provided to demonstrate the effectiveness of the developed computer codes. The results show that the numerical procedure based on the nodal partial saturation concept, developed in this study, provides numerically valid and reasonably accurate predictions.  相似文献   

15.
《Composites Part A》2001,32(6):877-888
Resin transfer molding (RTM) is a promising fabrication method for low to medium volume, high-performance polymer composite structures. Yet there exist several technical issues which impede a wide application base. One of these issues is tooling design. In the RTM process, the arrangement of injection gates and vents of the mold has a significant impact on product quality and process efficiency. In this paper, a systematic approach for optimum design of RTM tooling is introduced. This approach is built upon an RTM virtual manufacturing (simulation) model coupled with a neural network–genetic algorithm optimization procedure. The simulation model is employed to predict resin flow patterns (i.e. potential quality problems) and processing efficiency (mold filling time). With the simulation results, a neural network is trained to create a rapid RTM process model. Genetic algorithms are applied to this rapid RTM process model to search for the optimum solution to RTM process design. This tooling design scheme enables the engineer to determine the optimum locations of injection gates and vents for the best processing performance, i.e. short filling time and high quality level (minimum defects). The approach is illustrated with an example.  相似文献   

16.
A process cycle of resin transfer molding (RTM) consists of two sequential stages, i.e. filling and curing stages. These two stages are interrelated in non-isothermal processes so that the curing stage is dominated by the resin flow as well as temperature and conversion distributions during the filling stage. Therefore, it is necessary to take into account both filling and curing stages to analyze the process cycle accurately. In this paper, a full three-dimensional process cycle simulation of RTM is performed. Full three-dimensional analysis is necessary for thick parts or parts having complex shape. A computer code is developed based on the control volume/finite element method (CV/FEM). The resulting computer code can provide information regarding flow progression and pressure field during mold filling; and temperature distribution and degree of cure distribution for a process cycle. The computer code can also be used for process cycle simulation of composite structures with complex geometry and with various molding strategies including switching injection strategy, multiple gate injection strategy and variable mold wall temperature. Numerical examples provided in the present work show the capabilities of the computer code in analyzing the process cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号