首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
制备了不同配比的PVC/ACR合金样品,研究了工艺条件和配比与合金力学性能、加工性能之间的关系,实验结果显示:PVC/ACR合金具有优异的冲击性能;PVC/ACR合金的力学综合性能良好;加工温度及受热时间对合金力学性能有很大影响;超细和超微细填料对PVC/ACR合金有良好填充效果。  相似文献   

2.
陈龙  刘国才 《塑料科技》2006,34(3):13-15,12
研究并制备出具有较好冲击性能的PVC/ACR共混合金。着重研究了改性剂和填料的粒径、用量等对共混合金力学性能的影响。结果表明:ACR能较大幅度提高PVC的冲击强度,而其拉伸强度下降并不大。  相似文献   

3.
以聚丙烯酸丁酯(PBA)为内核,通过种子乳液聚合制备了分别以聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、PMMA/PVC为壳层的纯丙烯酸酯(ACR)和PVC改性ACR乳液.扫描电镜观察发现,纯ACR乳胶粒子具有明显的核-壳结构,进一步包覆PVC后形成疏松外层.考察了不同结构ACR与PVC共混物的相态结构、抗冲性能和断面形貌,发现用PVC部分或完全替代PMMA壳层的改性ACR在PVC基体分散良好,具有与纯ACR相当的增韧PVC作用,冲击断面呈现典型的韧性断裂特征.  相似文献   

4.
研究了VC—BA树脂(即氯乙烯一丙烯酸丁酯共聚树脂)与ACR对PVC干混料的加工性能、试样的力学性能的影响。结果表明:VC—BA树脂与PVC相容性良好。它的加入促进了PVC体系的熔融,改善了干混料的塑化性能,提高了试样的力学性能,可以替代ACR,是性能良好的PVC改性剂。  相似文献   

5.
主要以有机锡热稳定剂为对比物,研究了稀土热稳定剂对PVC/ACR性能的影响。稀土热稳定剂对PVC/ACR的力学性能、加工性能都有不同程度的提高,稀土热稳定剂的热稳定性能符合PVC的加工条件,有望成为异型材的主流热稳定剂。  相似文献   

6.
采用乳液聚合技术,将实验室中的抗冲击型ACR实验结果扩大到中试,选择合理的生产方法和适宜的工艺条件生产抗冲击型ACR。按照国家标准对添加抗冲击型ACR的PVC型材进行性能测试。试验结果表明,所生产的ACR能赋予PVC制品良好的抗冲击性。  相似文献   

7.
ACR增韧聚碳酸酯/聚乳酸合金的制备与性能研究   总被引:1,自引:1,他引:0  
以核壳结构的丙烯酸酯类树脂(ACR)作为增韧剂,对聚碳酸酯(PC/)聚乳(酸PLA)合金进行增韧改性,研究了ACR用量对合金力学性能、热性能和微观形态的影响。结果表明:加入一定用量的ACR,合金的冲击强度大幅度提高,而其他力学性能影响较小;合金比例为PC/PLA=90/10时,二者的相容性良好,体系只有一个玻璃化温度;ACR的用量对合金的微观形态有一定的影响。  相似文献   

8.
闫冰  刘晓明 《中国塑料》2008,22(1):73-76
对丙烯酸酯接枝氯乙烯共聚物(ACR-g-VC)增韧聚氯乙烯(PVC)体系的力学性能和加工性能进行了研究,通过与丙烯酸酯核-壳接枝共聚物(ACR)、氯化聚乙烯(CPE)增韧PVC体系的加工性能进行对比,发现其加工性能与ACR增韧PVC体系的加工性能接近。通过对PVC/ACR-g-VC与PVC/ACR的力学性能和形态结构的对比,分析了两种体系增韧效果差异的原因。实际应用研究表明,ACR-g-VC与CPE共同使用时有协同增韧作用。  相似文献   

9.
PVC/ABS 塑料合金是一种冲击强度高且阻燃的新型材料。其综合性能好,且价廉。本文总结了 PVC/ABS 塑料合金的研制工作。采用 PVC/ABS 增容剂三元共混体系,二段法加料方式双螺杆挤出或密炼融熔共混,能够得到性能良好的 PVC/ABS 塑料合金。  相似文献   

10.
使用丙烯酸酯类树脂(ACR)对聚碳酸酯(PC)/聚乳酸(PLA)共混合金(质量比为90:10)增韧改性,考察了不同ACR用量对PC/PLA合金的性能影响,并就不同增韧剂对PC/PLA合金的性能影响做出比较。结果表明:ACR加入量为合金质量的4%时合金的力学性能相对较好,ACR加入量为合金质量的6%时合金的加工性能相对较好。  相似文献   

11.
PVC/HRA共混物耐热与力学性能研究   总被引:5,自引:0,他引:5  
冯杰  黄志明 《中国塑料》1999,13(6):30-33
以PMI-St-AN三元共聚物为热改性剂,以ACR为抗冲改性剂,对PVC进行耐热和抗冲改性研究,探讨了共混温度及两种改性剂用量等对共混物物理。力学性能和耐热性能的影响,通过优化制备了耐热,抗冲性能兼备的PVC共混改性新材料。  相似文献   

12.
郭琴 《当代化工》2017,(11):2251-2253,2257
针对传统PVC管材存在加工性能不佳、冲击性能差等问题,结合PVC管技术的现状,提出一种抗冲击性的PVC管材材料。对此,文章首先对PVC管材增韧改性的基本原理进行分析,比较几种常用的增韧改性剂,最终选择ACR、MBS作为增韧改性剂;其次,以PVC树脂、SG型树脂等作为原材料,以MBS、ACR作为改性剂,对PVC管材进行制备,分别比较不同改性剂下的PVC管材性能;然后设计MBS+ACR的复配体系,得到不同复配体系下的PVC性能。由此通过上述的研究得出,在不考虑其他因素变化的情况下,MBS、ACR可提升PVC管材的抗冲击性能力,并赋予了PVC管材更好的断裂伸长率,从而大大提高了PVC的性能,并简化了加工难度。  相似文献   

13.
对PVC冲击改性剂——MBS、CPE和ACR的分子组成和分子结构进行了分析,研究了其抗冲改性机理及对PVC制品低温冲击强度、耐候性、维卡软化点、韧性的影响。从高分子热力学的角度分析了CPE和ACR在PVC中分散所形成的制品结构。指明了传统ACR和CPE在PVC改性中所存在的优缺点。在此基础上分析了理想冲击改性剂ACR应具有的结构特点,并设计和开发了新型冲击改性剂ACRHL-56和HL-58,通过试验对其性能与传统冲击改性剂ACR和CPE进行了比较,发现其性能远优于后者。  相似文献   

14.
核-壳结构冲击改性剂ACR合成技术研究   总被引:1,自引:0,他引:1  
李晶 《聚氯乙烯》2007,(10):26-29
采用种子乳液聚合工艺合成了核-壳结构冲击改性剂ACR,重点考察了ACR胶乳粒径及ACR/PVC共混物性能的影响因素,对ACR胶乳粒径及其分布、胶乳粒子形态结构及ACR树脂的结构和性能进行了表征和测试。  相似文献   

15.
The impact properties of core‐shell acrylate (CS‐ACR)/chlorinated polyethylene (CPE)/poly(vinyl chloride) (PVC) blends under different temperatures were investigated. The fracture surface morphologies of the blends were observed by scanning electron microscopy (SEM). The results show that there exists significant synergistic effect between CS‐ACR particles and CPE in toughening PVC, and the impact properties of the blends generally correlate well with SEM morphologies. Besides, with increasing CS‐ACR content, ductile–brittle transition point of the ternary blends remarkably shifts to a lower temperature. Dynamic mechanical analysis exhibited that intensity and area of low‐temperature tan δ peaks of the CPE/PVC blends increase obviously after the addition of CS‐ACR particles, which to some extent are just in line with the changes in impact strength and ductile–brittle transition point of the blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
研究了CPVC/PVC/ACR三元共混材料的物理力学性能。结果表明,共混材料的维卡软化温度和拉伸屈服强度随CPVC用量的增加而增加;当ACR用量为6-8份时,可明显改善共混材料的抗冲性能。  相似文献   

17.
杨敏  潘明旺  万林战  张留成 《塑料工业》2002,30(4):46-48,51
采用乳液聚合法合成了核壳结构的丙烯酸酯共聚物(ACR)。借助于动态光散射粒径分析法,透射电镜,IR,DSC考察了ACR共聚物乳胶粒径,核壳结构,组成变化及玻璃化转变。发现层单体比对缺口冲击强度有较大影响,缺口冲击强度随着核层橡胶相质量的增加而明显上升。此外还考察了复合乳化剂使用的情况,并用扫描电镜观察了冲击样条断面的形貌特征。这种ACR与PVC共混后能显著提高其冲击强度。  相似文献   

18.
High impact toughness poly(vinyl chloride) (PVC)/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30)/acrylic resin (ACR) blends were prepared. Incorporation of ACR did not play a negative role in thermal properties. The glass transition temperature, heat distortion temperature, and thermal stability remained constant as ACR content increased. With the addition of 10 phr (parts by weight per hundred parts of resin) of ACR, the impact strength increased by 20.0 times and 7.2 times compared with that of pure PVC and that of PVC/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30) blends, respectively. However, tensile strength and flexural properties decreased. The morphology changed from domain distortions to crazing with fibrillar plastic deformation as ACR content increased. The toughening mechanism varied from “shear yielding” to “craze with shear yielding,” which depended on the content of ACR. This study presents the finding that addition of ACR drastically improved impact toughness without sacrificing any heat resistance, and the enhanced impact strength could be at the same level of supertough nylon. J. VINYL ADDIT. TECHNOL., 21:205–214, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
ACR树脂的生产技术概况及其发展动态   总被引:4,自引:0,他引:4  
ACR树脂是由甲基丙烯酸甲酯、丙烯酸丁酯经种子乳液聚合得到的热塑性接枝聚合物.主要用作PVC硬制品的抗冲改性剂,可以改善PVC制品的抗冲击性能和其加工性能。本文介绍了PVC抗冲改性剂ACR树脂的国内外生产概况,阐述了ACR树脂的技术概况,并分析了国内有关ACR树脂生产、技术、市场和价格等方面的一些发展动态。  相似文献   

20.
The compatibility, morphology, fusion behavior, and mechanical properties of blends of poly(vinyl chloride) (PVC), acrylic resin (ACR), and chlorinated polyethylene (CPE) (100/0–30/0–20) were studied. The experimental results show that the compatibility of the polyblend increases with the amount of ACR added. The blends composed of PVC/ACR/CPE (100/3–25/10–15) are fairly compatible. So far as impact strength is concerned, partially compatible blends are preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号