首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Entropy generation due to conjugate natural convection heat transfer and fluid flow has been studied inside an enclosure with bounded by two solid massive walls from vertical sides at different thicknesses. Enclosure is differentially heated from vertical walls and horizontal walls are adiabatic. Governing equations which are written in streamfunction-vorticity form solved by finite difference technique for the governing parameters as Rayleigh number, 103 ≤ Ra ≤ 106, length ratio of solid walls as 1 (for left vertical wall) and 2 (for right vertical wall) and thermal conductivity ratio of solid to fluid (k), 1 ≤ k ≤ 10. Entropy generation contours due to fluid friction and heat transfer irreversibility, isotherms, streamlines, Nusselt numbers and velocity profiles were obtained. It is found that entropy generation increases with increasing of thermal conductivity ratio and thicknesses of the walls. Entropy generation due to heat transfer is more significant than that of fluid flow irreversibility for all values of thickness of the solid vertical walls.  相似文献   

2.
We study heat transfer in inclined rectangular cavities, which may be used as receivers of concentrated solar radiation. One of the active walls is subject to concentrated solar radiation and the other is kept at constant temperature. Continuity, momentum and energy equations are solved by finite difference — control volume numerical method. The relevant governing parameters are: the Rayleigh numbers from 103 to1012, the cavity aspect ratio, A = L/H from 0.5 to 2, the inclination angle, from 30 to 90°.We found that the Nusselt number is an increasing function of the Rayleigh number, the aspect ratio and the inclination angle. Based on the computed data a correlation is derived in the form of Nu = f(Ra, A, ).  相似文献   

3.
This paper presents the experimental results carried out in dimpled tubes for laminar and transition flows and completes a previous work of the authors focused on the turbulent region. It was observed that laminar flow heat transfer through horizontal dimpled tubes is produced in mixed convection, where Nusselt number depends on both the natural convection and the entry region. Employing water and ethylene glycol as test fluids, the following flow range was covered: x*=10−4–10−2 and Ra=106–108.

The experimental results of isothermal pressure drop for laminar flow showed dimpled tube friction factors between 10% and 30% higher than the smooth tube ones. Moreover, it was perceived that roughness accelerates transition to critical Reynolds numbers down to 1400. Correlations for the laminar friction factor f=f(Re,h/d) and for the critical Reynolds Recrit=Recrit(h/d) are proposed. The hydraulic behaviour of dimpled tubes was found to depend mainly on dimple height.

In mixed convection, high temperature differences in the cross section were measured and therefore heat transfer was evaluated by a circumferentially averaged Nusselt number. Experimenal correlations for the local and the fully developed Nusselt numbers and are given. Results showed that at low Rayleigh numbers, heat transfer is similar to the smooth tube one whereas at high Rayleigh, enhancement produced by dimpled tubes can be up to 30%.  相似文献   


4.
The problem of two-dimensional steady mixed convection in a vertical porous layer is investigated numerically in the present paper using the thermally non-equilibrium model. The vertical porous layer is assumed to have a finite isothermally heated segment on one vertical wall which is otherwise adiabatic and the other vertical wall is cooled to a constant temperature. Non-dimensionalization of the governing equations results in four parameters for both aiding and opposing flows: (1) Ra, Rayleigh number (2) Pe, Péclet number (3) Kr, thermal conductivity ratio parameter, and (4) H, heat transfer coefficient parameter. The numerical results are presented for 0.01  H  100, 0.01  Kr  100, 0.01  Pe  100 and Ra = 10, 50 and 100. The results show that, the thermal equilibrium model cannot predict the average Nusselt number correctly for small values of H × Kr. In both the aiding and opposing flows, the total average Nusselt number is decreasing with increasing the heat transfer coefficient parameter at low values of Pe, while for high values of Pe, higher H will enhance the total heat transfer rate. Increasing the thermal conductivity ratio leads to increase in the total average Nusselt number. It is found also that the total average Nusselt number depends strongly on the thermal conductivity ratio parameter and depends slightly on the heat transfer coefficient parameter.  相似文献   

5.
Detailed numerical computations for laminar and turbulent natural convection within a square cavity filled with a fluid saturated porous medium are presented. Heated vertical walls are maintained at constant but different temperatures, while horizontal surfaces are kept insulated. The macroscopic κε turbulence model with wall function is used to handle turbulent flows in porous media. In this work, the turbulence model is first switched off and the laminar branch of the solution is found when increasing the Rayleigh number, Ram. Computations covered the range 10 < Ram < 106 and 10−7 < Da  < 10−10 and made use of the finite volume method. Subsequently, the turbulence model is included and calculations start at high Ram, merging to the laminar branch for a reducing Ram and for Ram less than a certain critical Rayleigh number, Racr. This convergence of results as Ram decreases can be seen as a characterization of the laminarization phenomenon. For Ram values less than around 104, both laminar and turbulent flow solutions merge, indicating that such critical value for Ram was reached. Results further indicate that when the parameters porosity, Pr, conductivity ratio between the fluid and the solid matrix and the Ram are kept fixed, the lower the Darcy number, the higher the average Nusselt number at the hot wall.  相似文献   

6.
The numerical investigation of the natural convection in concave and convex parabolic enclosures with a nanofluid consisting of water and copper nanoparticles is carried out by using the finite volume method. The upper and lower walls of the enclosures are adiabatic while the sidewalls are isothermal at a cold temperature. An internal heat source of constant length (ε = 0.2) and negligible thickness is placed at various vertical positions along the center of the enclosure. It was found that the increase in the location of the heat source leads to a drop in the water and nanofluid flow circulation in both types of enclosures. For both considered Cases I and II, the average Nusselt number increases when the Rayleigh number and solid volume fraction increase. Moreover, it was concluded that Case I with δ = 0.8 is the optimum case for heat transfer enhancement for Ra = 103 and Ra = 104. Case II with δ = 0.5 is optimum for Ra = 105. Both cases are satisfied when the nanofluid is used with ? = 0.2.  相似文献   

7.
Having the wide application of metal oxides in energy technologies, in recent years, many researchers tried to increase the performance of the PV/T system by using metal oxide-based nanofluids (NFs) as coolants or optical filters or both at the same time. This paper summarizes recent research activities on various metal oxides (Al2O3, TiO2, SiO2, Fe3O4, CuO, ZnO, MgO)-based NFs performance in the PV/T system regarding different significant parameters, e.g., thermal conductivity, volume fraction, mass flowrate, electrical, thermal and overall efficiency, etc. By conducting a comparative study among the metal oxide-based NFs, Al2O3/SiO2-water NFs are mostly used to achieve maximum performance. The Al2O3-water NF has a prominent heat transfer feature with a maximum electrical efficiency of 17%, and a maximum temperature reduction of PV module of up to 36.9°C can be achieved by using the Al2O3-water NF as a coolant. Additionally, studies suggest that the PV cell’s efficiency of up to 30% can be enhanced by using a solar tracking system. Besides, TiO2-water NFs have been proved to have the highest thermal efficiency of 86% in the PV/T system, but TiO2 nanoparticles could be hazardous for human health. As a spectral filter, SiO2-water NF at a size of 5 nm and a volume fraction of 2% seems to be very favorable for PV/T systems. Studies show that the combined use of NFs as coolants and spectral filters in the PV/T system could provide a higher overall efficiency at a cheaper rate. Finally, the opportunities and challenges of using NFs in PV/T systems are also discussed.  相似文献   

8.
Simultaneous heat and mass transfer in free convection at horizontal cylinder electrodes has been investigated experimentally using the electrochemical limiting diffusion current technique. The convective flow patterns occuring have been observed using Schlieren photography. The results confirmed the use of a combined Grashof number (GRm) to account for thermal and concentration buoyancy effects. Various combinations of electroactive species concentration, cylinder diameter and cylinder surface temperature have been used. Results have been successfully correlated by the equations , 7×107 < GRmSc< 4×109 and , 4×109 mSc<1011 The experiments cover the range of mass transfer and heat transfer Grashof numbers 3.64×104 m <3.02×106, 5.67×104 h <6.55×106  相似文献   

9.
LiNi1/3Mn1/3Co1/3O2 prepared by a spray drying method exhibited poor cyclic performance when it was operated at rates of 0.5C and 2C in 3–4.6 V. A metal oxide (ZrO2, TiO2, and Al2O3) coating (3 wt%) could effectively improve its cyclic performance at both 0.5C and 2C. Electrochemical impedance spectroscopy (EIS) studies suggested that both the surface resistance and the charge transfer resistance of the bare LiNi1/3Mn1/3Co1/3O2 significantly increase after 100 cycles, whose origin is mainly related to the change in both the particle surface and electrode morphologies. The presence of a thin metal oxide layer could remarkably suppress the increase in the total resistance (sum of the surface resistance and the charge transfer resistance), which was attributed to the improvement in good cyclic performances.  相似文献   

10.
The present paper investigates a promising avenue for the intensification of turbulent free convection in various configurations using adequate binary gas mixtures in which helium (He) is the primary gas component and carbon dioxide (CO2), methane (CH4), nitrogen (N2), oxygen (O2) and xenon (Xe) are the secondary gas components. In the context of binary gas mixtures, the thermo-physical properties: viscosity, thermal conductivity, density and isobaric heat capacity depend on three quantities: temperature, pressure and molar gas composition. Within the platform of turbulent free convection using the five binary gas mixtures for Ra > 109, results are presented for the allied convective coefficient hmix/B varying with the molar gas composition w in the w-domain [0, 1]. Values of the maximum allied convective coefficients hmix,max/B attained at the correlative optimal molar gas compositions wopt are easily extracted from suitable design charts.  相似文献   

11.
The solid solutions of CexSn1−xO2 incorporated with alumina to form CexSn1−xO2–Al2O3 mixed oxides, by the suspension/co-precipitation method, were used to prepare CuO/CexSn1−xO2–Al2O3 catalysts for the selective oxidation of CO in excess hydrogen. Incorporating Al2O3 increased the dispersion of CexSn1−xO2, but did not change their main structures and did not weaken their redox properties. Doping Sn4+ into CeO2 increased the mobility of lattice oxygen and enhanced the activity of the 7%CuO/CexSn1−xO2–Al2O3 catalyst in the selective oxidation of CO. The selective oxidation of CO was weakened as the doped fraction of Sn4+ exceeded 0.5. Incorporating appropriate amounts of Sn4+ and Al2O3 could obtain good candidates 7%CuO/CexSn1−xO2–Al2O3(20%), 1–x=0.1–0.5, for a preferential oxidation (PROX) unit in a polymer electrolyte membrane fuel cell system for removing CO. Its activity was comparable with, and its selectivity was much larger than, that of the noble catalyst 5%Pt/Al2O3.  相似文献   

12.
以硫酸钠、硫酸钾和硫酸镁为原料,采用在硫酸钠-硫酸钾二元共晶盐中加入硫酸镁的方法制备三元硫酸熔盐。应用TG-DSC联用分析仪、热常数分析仪、X射线衍射仪以及热循环法对复合熔盐的熔点、相变潜热、热导率、比热容、分解点以及热稳定性进行表征。结果表明:所制备的三元硫酸熔盐熔点分布在667.5~669.7 ℃之间,较二元熔盐熔点降低了160 ℃左右,硫酸镁含量为30%(质量分数)的三元硫酸熔盐相变潜热值最大为94.3 J/g,比热容最大为1.13 J/(g·K)(720℃≤T≤800℃),导热系数为0.41 W/(m·K),分解温度为1070 ℃,经50次热循环后,相变潜热值降低约4.34%,熔点和物相保持基本恒定,具有良好的热稳定性。该研究为硫酸盐作为高温传热蓄热介质提供了依据。  相似文献   

13.
In this paper, a numerical study of natural convection from a two dimensional “T” form cavity with rectangular heated blocks is conducted. The blocks are identical, and the domain presents a symmetry with respect to a vertical axis passing through the middle of the opening. The governing equations are solved using a control volume method, and the SIMPLER algorithm for the velocity–pressure coupling is employed. Special emphasis is given to detail the effect of Rayleigh number and block height on the heat transfer and the flow rate generated by the chimney effect. The results are given for the parameters of control as, 104Ra3×106, Pr=0.71, opening diameter (C=l/H=0.15), blocks gap (D=d/H=0.5) and blocks height (1/8B=h/H1/2). These results show that the heat transfer variation with Ra is in the same manner as those met in the case of the vertical smooth or ribbed channels.  相似文献   

14.
以ZIF-67作为金属有机框架(MOF),通过原位沉淀法生长在膨胀石墨片上对膨胀石墨进行改性,经过煅烧后形成Co3O4/EG分级多孔混合结构。为了优化硬脂酸的充放热性能,将Co3O4/EG与硬脂酸通过熔融共混和真空吸附法复合,制备出具有优异充放热性能的SA/Co3O4/EG复合相变材料。表征SA/Co3O4/EG复合相变材料的微结构、物相、相变焓值、相变温度和充放热时间等热物理性能,分析添加物Co3O4/EG的微结构对硬脂酸相变储热材料微结构和热性能产生的影响。添加物Co3O4/EG对SA/Co3O4/EG复合相变材料的相变温度影响较小,相变温度与Co3O4/EG添加量没有依赖关系。而复合储热材料的相变潜热随Co3O4/EG量的增加而减少,但与理论计算相差较少。Co3O4/EG分级多孔结构可以阻止Co3O4的团聚并提供高比表面积和孔体积吸附硬脂酸,多孔隙结构Co3O4和高热导率膨胀石墨(EG)的协同作用可以增加硬脂酸相变储热材料的热传递,缩短充放热时间,提高充放热效率。  相似文献   

15.
This paper presents numerical results of natural convection at high Rayleigh numbers in annuli formed by concentric and vertically eccentric horizontal cylinders. Solutions are obtained in a numerically generated boundary-fitted coordinate system in which coordinate lines are coincident with the enclosure boundaries. Results obtained reveal the effects of eccentricity and Rayleigh number on convective heat transfer. Results are presented in the form of vector plots of velocity, local heat transfer data in addition to contours for temperature, turbulent kinetic energy, and turbulent viscosity. All results presented are for a fluid of Prandtl number 0.7 and Rayleigh numbers in the range of 105 to 2×107.  相似文献   

16.
Undoped and aluminium-doped zinc oxide films have been prepared by thermal evaporation of zinc acetate [Zn(CH3COO)2 2H2O] and aluminium chloride [AlCl3] onto a heated glass substrate. The structural and optoelectrical properties of the films have been studied. The effects of heat treatment for the as-deposited films in air and vaccum are investigated. Highly transparent films with conductivity as low as 2×10−3 Ω cm can be produced by controlling the deposition parameters. The electron carrier densities are in the range 0.2–7×1019 cm−3 with mobilities of 22–58 cm2 V−1 s−1.  相似文献   

17.
结合西安市某个埋深为2505 m的U型深埋管换热系统,在原位实验验证的基础上建立三维全尺寸数值计算模型,进而模拟分析埋管内热流载体种类对强化埋管换热的效果。埋管内热流载体除常规使用的水外,还选用Al2O3/水、CuO/水和SiO2/水3种纳米流体。通过改变这3种纳米流体的纳米颗粒体积浓度分别为0.1%、0.3%、0.5%及1.0%,分析纳米流体种类及纳米颗粒体积浓度对埋管换热的影响。研究结果表明,就整个埋管的换热而言,纳米流体的强化换热效果较小。因此,通过改变埋管热流载体来达到埋管强化换热的方法并不高效合理。  相似文献   

18.
Metal oxide-coated spinel was investigated with respect to electrochemical characteristics. Metal oxide coating on commercial spinel powder (LiMn2−xMxO4, M=Zr, Nikki, Japan) was carried out using the sol–gel method. Al2O3/CuOx-coated spinel exhibited stable cycle performance in the range from 3.0 to 4.4 V, and it had lower charge transfer resistance and higher double layer capacitance than bare spinel in later cycles. In the SEM image of the powder after the cell test, bare spinel showed abnormal surfaces formed by decomposition of the electrolyte, while Al2O3/CuOx-coated spinel displayed a normal surface covered with a surface film. Therefore, it is expected that an Al2O3/CuOx layer coated on the spinel powder can function as a protective film, which supresses the reaction between electrolyte and active material.  相似文献   

19.
A comparative analysis of the properties of LiNi0.5Mn0.5O2 and Li1+xNi0.5Mn0.5O2 (0.2 ≤ x ≤ 0.7) powders, obtained by the freeze drying method, was performed. Lattice parameters of Li1+xNi0.5Mn0.5O2 decreased considerably with growing amounts of Li until x = 0.3; at x > 0.5 trace amounts of Li2MnO3 are observed by X-ray diffraction (XRD) patterns. X-ray photoelectron spectroscopy (XPS) analysis displayed an increase of Ni3+/Ni2+ ratio at 0.3 < x < 0.5, while Mn 2p spectra were almost identical in all samples. Rechargeable capacity values (V = 2.5–4.6 V) increased systematically with x reaching its maximum (185–190 mAh g−1) at x = 0.5. Samples with superstoichiometric lithium content also demonstrated good C rate characteristics.  相似文献   

20.
Electrical and structural properties of bismuth oxide doped scandia-stabilized zirconia (ScSZ) electrolyte for solid oxide fuel cells (SOFCs) have been evaluated by means of XRD, TGA, DTA, and impedance spectroscopy. The amount of Bi2O3 in the ScSZ was varied in the range of 0.25–2.0 mol%. The original ScSZ samples indicated a rhombohedral crystalline structure that in general has lower conductivity than the cubic phase. However, the addition of Bi2O3 to ScSZ electrolyte was found to stabilize the cubic crystalline phase as detected by XRD. Impedance spectroscopy measurements in the temperature range between 350 and 900 °C indicated a sharp increase in conductivity for the system containing 2 mol% of Bi2O3 that is attributed to the presence of the cubic phase. In addition, impedance spectroscopy measurements revealed significant decrease of both the grain bulk and grain boundary resistances with respect to the temperature change from 600 to 900 °C and concentration of Bi2O3 from 0.5 to 2 mol%. The electrical conductivity at 600 °C obtained for 2 mol% Bi2O3 doped ScSZ was 0.18 S cm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号