首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coefficients of thermal expansion (CTEs) of 20 vol% SiCp/Al composites fabricated by powder metallurgy process were measured and examined from room temperature to 450 °C. The SiC particles are in three nominal sizes 5, 20 and 56μm. The CTEs of the SiCp/Al composites were shown to be apparently dependent on the particle size. That the larger particle size, the higher CTEs of the composites, is thought to be due to the difference in original thermal residual stresses and matrix plasticity during thermal loading. At low temperature, the experimental CTEs show substantial deviation from the prediction of the elastic analysis derived by Kerner and rule of mixture (ROM), while the Kerner’s model agrees relatively well at high temperatures for the composite with the larger particle size.  相似文献   

2.
《Composites Part A》2002,33(8):1115-1121
The thermal expansion behavior and residual stresses in multilayer capacitor (MLC) systems are analyzed in the present study. An MLC consists of a laminate of multiple alternating electrode layers and dielectric layers sandwiched between two ceramic cover layers. An analytical model is developed to derive simple closed-form solutions for the apparent coefficients of thermal expansion (CTEs) of the laminate. Plasticity of electrodes is included in the analysis. The predicted apparent CTEs are compared with measurements of some laminated ceramic composites. The effects of plasticity on apparent CTEs and residual stresses in MLC systems are discussed.  相似文献   

3.
The present work aims to investigate the influences of thermal residual stresses and material properties on the thermomechanical deformation behavior of Al–B4C composites. Boron carbide-reinforced aluminum matrix composites having 4, 8, and 12 vol% boron carbide were fabricated using squeeze liquid stir casting method for experimental characterization of their microstructure, effective elastic moduli and effective CTEs at room temperature as well as elevated temperatures. Next, the thermomechanical behavior of fabricated composites was investigated using finite element modeling. The effects of thermal residual stresses on the effective material properties were examined by simulating the cooling process of MMCs from processing temperature to room temperature. The effective elastic moduli and the effective CTEs were predicted considering linear elastic as well as elastoplastic deformation of aluminum matrix, and the results obtained were compared with the experimental values. The effects of voids on effective material behavior are studied by simulating the void growth and nucleation using Gurson–Tvergaard–Needleman model.  相似文献   

4.
依据复合材料内部纤维在基体内的排布规律及层合板铺层特性,基于多尺度方法,建立单层板和层合板代表性体积单元(RVE)模型,施加相应的边界条件,预测单层板的热膨胀系数和工程常数,进而预测复合材料层合板各向异性的等效热膨胀系数。通过与实验数据对比发现,基于正六边形单层板RVE模型预测的热膨胀系数,相比理论预测值,整体更接近实验值,其中预测的单向T300/5208碳纤维增强环氧树脂基复合材料、P75/934碳纤维增强环氧树脂基复合材料和C6000/Pi碳纤维增强环氧树脂基复合材料的横向热膨胀系数与实验结果的误差分别只有3%、1%和2%;采用单层板RVE预测的单向ECR/Derakane 510C玻璃纤维增强乙烯基酯树脂基复合材料的工程常数与实验值最大相差7.5%;层合板RVE模型预测的正交AS4/8552碳纤维增强环氧树脂基复合材料厚度方向的热膨胀系数与实验结果误差可以忽略,只有0.08%。最后以大型复合结构常用的正交铺层结构为研究对象,基于给出的单层板和层合板RVE模型预测了不同铺层复合材料烟道层合板的等效热膨胀系数,环向铺层比例对厚度方向的热膨胀系数影响较小。   相似文献   

5.
《Composites Part A》2007,38(6):1581-1596
This paper is the third part in a series of review papers on residual stresses in thermoplastic composites. The first two parts were dedicated to the formation of thermal residual stresses and experimental techniques to detect these stresses, respectively. This third paper discusses the effects that thermal residual stresses have on the material properties of thermoplastic composites. Composite laminates as well as composite structures were considered.Residual stresses were found to affect the composites’ matrix-dominated, mechanical and durability properties, as well as to inflict damage and dimensional instability. Several mechanisms to relieve thermal residual stresses are proposed.  相似文献   

6.
The disparate thermal expansion properties of the fibres and matrices in high-performance composites lead to an inevitable build up of residual thermal stresses during fabrication. We first discuss the thermal expansion behaviour of thermoplastic and thermoset polymers that may be used as high-performance composite matrices. The three classes of polymers considered are epoxies, amorphous thermoplastics, and semicrystalline thermoplastics. The relevant thermal expansion data for prediction of the magnitude of the residual stresses in composites is the zero (atmospheric)-pressure thermal expansion data; these data are plotted for a range of thermoplastics and a typical epoxy. Using the technique of photoelasticity, we have measured the magnitude of the residual stresses in unidirectional graphite composites with an amorphous thermoplastic matrix (polysulfone) and with an epoxy matrix (BP907). The temperature dependence of the residual stress build up and the resulting magnitude of the residual stresses correlate well with the thermal and physical properties of the matrix resin.  相似文献   

7.
It is well established that the indentation hardness of metallic alloys shows a reasonable correlation with their yield strength or ultimate strength. Experiments illustrate that such a unique correlation is nonexistent for discontinuously reinforced metal matrix composites, even when the indentation size is much greater than the reinforcement size. For aluminum alloys reinforced with silicon carbide particles, the same composite yield strength and tensile strength with different reinforcement fractions do not lead to similar hardness, or vice versa. Finite element analyses are carried out to rationalize the experimental findings. The modeling utilizes a two-dimensional plane-strain formulation. Discrete particles are included in the material model, and the overall stress-strain response and the indentation response are numerically simulated. The results confirm the lack of unique correspondence between the composite hardness and strength. The alteration of local heterogeneity in the composite is found to affect the indentation response. Effects of the geometrical arrangement of particles and thermal residual stresses on the indentation response are also investigated numerically.  相似文献   

8.
残余热应力对Al2O3/Ni金属陶瓷断裂行为和力学性能的影响   总被引:1,自引:0,他引:1  
运用残余热应力理论定性地解释也残余热应力对Al2O3/Ni金属陶瓷断裂行为和力学性能的影响,Ni颗粒位于Al2O3晶内或Ni含量低时,在Al2O3-Al2O3晶界产生张应力,易发生沿晶断裂;而其位于Al2O3晶界或Ni含量高时,在Al2O3-Al2O3晶界产生压应力,易产生穿晶断裂。  相似文献   

9.
Thermal residual stresses in metal matrix composites: A review   总被引:1,自引:0,他引:1  
Recently, metal matrix composites (MMCs) have generated a considerable interest in the materials field because of their attractive physical and mechanical properties. However, during the fabrication of MMCs, thermal residual stresses are reportedly developed in the matrix as a result of the mismatch of the thermal expansion coefficients between the reinforcement and the matrix. It is well established that these residual stresses have a significant effect on the composite properties. For example, due to the presence of thermal residual stresses, it is almost never possible to achieve the maximum elastic response of the composites. In addition, yield stress and fracture toughness of the composites are significantly affected by thermal residual stresses. In this paper, a critical review of the published literature on thermal residual stresses in MMCs and their effect on composite properties are presented. Also, experimental and numerical techniques that are currently available to measure and estimate thermal residual stresses are reviewed and discussed.  相似文献   

10.
Thick fabric composite cylinders for nozzle parts in solid rocket motors should be designed to endure the extreme temperature and pressure of combustion gas. As the thickness of the composite cylinder increases, fabricational residual stresses due to the anisotropic thermal expansion or shrinkage of fabric composites also increase, which induces inter-laminar failures. Therefore, the accurate estimation of the residual stresses is indispensable for the development of thick fabric composite cylinders.

In this paper, the residual stresses in thick cylinders made of carbon fabric phenolic composites were measured by a new radial-cut-cylinder-bending method. To obtain the residual stresses from the measured relative strains during the radial-cut operation, a bending test of the cylinder with the radial-cut was performed instead of measuring the material properties with respect to radial positions. The thermal residual stresses were also calculated by finite element method considering shear deformation of fabric layers, and compared with the measured residual stresses by the new method, from which it was found that the new simple method estimated the residual stresses pretty well. Also the inter-laminar tensile strength at the position of maximum radial residual stress could be obtained from the bending test.  相似文献   


11.
三维机织复合材料的一种梁单元细观力学模型   总被引:9,自引:3,他引:6       下载免费PDF全文
根据三维机织复合材料中纤维束排列和变形的周期性特点,推导了一种细观梁单元模型。该模型考虑了纤维束的拉 (压) 弯耦合效应和纤维束之间的相互作用,可以描述纤维束和基体中的细观应力分布,并得到宏观的力学性能。针对一种典型的三维机织复合材料,首先根据编织参数,确定其细观几何结构,取最小周期的一段纤维束作为分析胞元,用上述细观梁单元分析了该段纤维束在面内拉伸荷载下的细观应力分布,计算出平均模量, 并用材料试验和细观实体有限元对本模型进行了检验,结果与本文的预测吻合良好。研究表明,拉、弯耦合效应引起的纤维束中的细观弯曲应力同平均轴向应力相比,不可忽略。   相似文献   

12.
The residual stresses occur in the frequency selective surface (FSS)-embedded composite structures after co-curing due to mismatch between the coefficient of thermal expansions between the FSS and composite materials. It is well known that residual stress has a great influence on the strength and fatigue life of the FSS-embedded composite structures. Numerous researches have been reported about residual stresses in the composite structures. However, studies on the residual stresses in the FSS-embedded composite structure have not been widely investigated. Therefore, in this study, the thermal residual stresses of FSS-embedded composite structures were analyzed using finite element analysis, with considering the effect of FSS pattern and size. Various FSS patterns, such as square loop, gridded square loop, and double square loop, are considered in the analysis. The effects of dimensional change of design parameters of FSS pattern on the residual stresses in the hybrid composites were also investigated.  相似文献   

13.
In several European countries, dental composites are replacing mercury-containing amalgams as the most common restorative materials. One problem with dental composites is residual stresses which may lead to poor performance of the restoration. In the present study, a combined modeling and materials characterization approach is presented and predictions compare well with experimental data on residual stresses. The model takes stress relaxation into account through the complete relaxation time spectrum of the resin. The approach allows for detailed parametric studies where resin and composite composition as well as cure conditions may be tailored with respect to residual stress generation.  相似文献   

14.
Study on the Thermal Expansion and Thermal Cycling of AlNp/Al Composites   总被引:1,自引:0,他引:1  
The AIN particle reinforced aluminum matrix composites with 50% volume fraction were fabricated by squeeze-casting technology.The thermal expansion behavior and its response to thermal cycling were studied between 20℃ and 400℃.Compared with four theoretical models,the measured CTEs of the composite lie within the elastic bounds derived by Schapery′s analysis .Schapery′s model and Kerner′s model agree well with the CTEs of the composites at lower temperature and elevated temperature,respectively.Strain hysteresis was observed between heating and cooling curves during cycling.This was attributed primarily to the anelastic behavior of the matrix induced by matrix residual stresses.  相似文献   

15.
In-plane and out-of-plane coefficients of thermal expansion (CTEs) are important parameters for thermodynamic analysis of Carbon/Carbon (C/C) composite. In this study, CTEs of a high performance 3D orthogonal woven C/C composite at high temperature are studied by multi-scale mechanical modeling using the finite element method. Two representative volume element (RVE) models at different length scales are used to evaluate the CTEs of the C/C material. Micro-scale model predicts the CTEs at the fibre tow scale in the three orthogonal directions (x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the in-plane and out-of-plane CTEs of the 3D C/C composite. The modeling results have good agreement with the experimental results reported in references. Based on the numerical approach, global CTEs of the 3D C/C composite are calculated from 300 to 2500 K, and their temperature dependences are discussed. The current applied multi-scale models provide an efficient approach to predict the CTEs of 3D textile materials, which will give some highlights for thermodynamic analysis and structures design of the C/C composite.  相似文献   

16.
《Composites Science and Technology》2006,66(11-12):1793-1802
The tensile properties and thermal expansion behaviors of continuous molybdenum fiber reinforced aluminum matrix composites (Mof/Al) have been studied. The Mof/Al composites containing different volume percents of Mo fibers were processed by diffusion bonding. The strengths of unidirectional Mof/Al composites were close to the rule-of-mixtures. The strengths of 0°/90° dual-directional composites increased with fiber content, while those of 45°/135° composites remained relatively low. The coefficients of thermal expansion (CTEs) of the composites decreased as the fiber content increased, close to the values of Mo fibers. With increasing temperature, the CTEs of unidirectional composites increased, while those of dual-directional composites decreased due to large accumulated thermal stresses. The CTEs of 45°/135° composites were lower than those of 0°/90° composites because of contraction effect. At temperatures above 250 °C, the CTEs of the dual-directional composites gradually increased due to matrix yielding and interfacial decohesion.  相似文献   

17.
三维打印碳纤维增强聚合物(CFRP)复合材料因层间材料失配和打印过程中梯度降温而产生热残余现象,影响工件成形质量。本文取代简单的同步降温假设,提出了符合实际制备工艺的梯度降温概念,据此建立了三维打印正交铺层复合材料板和梁的热残余变形和应力的解析解。为反映三维打印过程中随时序动态变化的制备和降温过程,考虑每层制备轮次的降温梯度并进行热残余分析,最后合成得到热残余变形和应力。讨论了4种梯度降温模式,覆盖了所有可能的三维打印工艺。以CFRP复合材料三维打印为例,验证了本文解析解的精度和可靠性,显示了同步降温假设会产生显著的误差,表明热残余水平与降温梯度成正比,讨论了铺层方式对热残余的影响。为优化三维打印CFRP复合材料的结构设计和制备工艺、降低热残余水平提供了可靠的分析方法。   相似文献   

18.
本文作者研究了600℃水淬和600℃退火处理的碳化硅晶须增强铝基复合材料的热膨胀行为,阐述两者热膨胀行为与内应力的内在关系。结果表明:淬火后复合材料基体的位错密度、内应力、及材料的有效屈服强度较高;而退火后复合材料基体的位错密度、内应力、及材料的有效屈服强度较低。当材料在600℃淬火后,升温过程中材料的热膨胀系数曲线在80℃和245℃各出现一个峰值,且后者明显高于前者;而600℃退火后材料的热膨胀系数曲线只在80℃出现一个波峰,且其峰值低于淬火材料相应的峰值。分析表明:材料热膨胀系数曲线出现的第一个峰是基体内拉应力释放的结果;而淬火后材料热膨胀系数曲线出现的第二个峰是基体压应力释放速率的标志。  相似文献   

19.
A new type of hybrid SiC foam–SiC particles–Al composites (VSiC = 53, 56.2 and 59.9%) to be used as an electronic packaging substrate material were fabricated by squeeze casting technique, and their thermal expansion behavior was evaluated. The coefficients of thermal expansion (CTEs) of the hybrid composites in the range of 20–100 °C were found to be between 6.6 and 7.7 ppm/°C. The measured CTEs are much lower than those of SiC particle-reinforced aluminum (SiCp–Al) composites with the same content of SiC because of the characteristic interpenetrating structure of the hybrid composites. A material of such a low CTE is ideal for electronic packaging because of the low thermal mismatch (and therefore, low thermal stresses) between the electronic component and the substrate. To achieve similar CTEs in SiCp–Al composites, the volume fraction of SiC would be much higher than that in the hybrid composites.  相似文献   

20.
The influence of manufacturing process thermal residual stresses and hydrostatic stresses on yielding behavior of unidirectional fiber reinforced composites has been investigated when subsequently subjected to various mechanical loadings. Three-dimensional finite element micro-mechanical models have been used. The results of this study reveal that the size of the initial yield surface is highly affected by the thermal residual and hydrostatic stresses. It was also found that effects of a uniform temperature change on the initial yield surface in the composite stress space is not equivalent to a solid translation of the surface in the direction of the hydrostatic stress axis. At the micro-level, magnitudes of various stress components within the matrix due to the thermal residual and hydrostatic stresses are different. However, at a macro-level, both temperature change and hydrostatic loading of composites show similar effects on the initial yield surface in the composite stress space. In an agreement with experimental data, results also show that residual stresses are responsible for asymmetric behavior of composites in uniaxial tension/compression in the fiber direction. This asymmetric behavior suggests that the existing quadratic yield criteria need modification to include thermal residual stress effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号