首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substituting composite structures for conventional metallic structures has many advantages because composite materials have both high specific stiffness and damping characteristics compared to conventional metallic materials. In this study, circular plate cutting tools which are used for rough machining of bearing sites in crankshafts or camshafts were designed with the fiber reinforced composite material to reduce tool mass and to improve the dynamic stiffness of circular plate cutting tools. The hybrid steel/composite circular plate cutting tool was analyzed by finite element method with respect to material types such as composite and foam, stacking angles of the composite, adhesive bonding thickness, and dimensions of the cutting tool. Also, the constrained damping characteristics of the tools were experimentally investigated with respect to the adhesive bonding thickness and material type such as composite and PVC foam. From the finite element analysis and experimental results, optimal design parameters for the hybrid steel/composite circular plate cutting tool were suggested.  相似文献   

2.
The applications of composite materials have become common in different industries. These materials introduce lower weight, high strength, and viscoelastic properties. Although composite materials offer many advantages in the designing and manufacturing of structures, they cannot replace the wide range of using metallic materials. Most of the industries especially aerospace try to use composite materials together with metal advantages in order to design a safe and optimized structure. The offshore structure can be reinforced and repaired with composite layers. In this research, the effects of composite reinforcement on the dynamic behavior of metallic plates are studied. Several panels are treated with different lay-ups and the modal testing was conducted to evaluate the effect of such treatments. This reinforcing can change both stiffness and damping properties of structures.

The stiffness properties of such reinforced plates can be influenced by fiber properties, while the damping properties come from the viscoelastic property of the matrix. Modal testing is applied to the specimens and the modal parameters are derived experimentally. This study shows that using composite material can modify both stiffness and damping characteristics.  相似文献   


3.
The conventional speed reducer uses the concept of rigid bodies, but the harmonic drive is operated by the elastic theory. As for this, harmonic drive shows different characteristics in operation principles and analysis compared to the conventional ones. Flexspline with components of harmonic drive can generate repeated vibration by the wave generator. Thus flexspline should have a good vibration characteristic. In this paper, a study on stress, deformation and related vibration characteristics using the finite element method tool has been carried out on the flexspline as a part of speed reducer. The damping ratio of composite flexspline is also five times as high as that of the steel flexspline. As a result of this study, composite flexspline has shown an improved quality compared to the conventional steel flexspline at the natural frequency, stiffness and damping capacity.  相似文献   

4.
The damping characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as mass and stiffness can be. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach that is capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of a composite tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping. The second approach employs a detailed numerical step-by-step integration procedure.  相似文献   

5.
The material used for robot structures should have specific stiffness (stiffness/density) to give positional accuracy and fast maneuverability to the robot manipulator. Also, high material damping is beneficial because it can dissipate the structural vibration induced in the robot manipulator structure. Both the high specific stiffness and damping of the material cannot be achieved through conventional materials such as steel and aluminum because they have almost the same low specific stiffness and low material damping. However, fiber reinforced polymeric composite materials that consist of high specific modulus fiber and high damping matrix have both high specific stiffness and high material damping.

In order to increase specific stiffness and damping, in this work, the third robot arm of the articulated robot manipulator that has 6 d.f. (degrees of freedom), 60 N payload and 0.1 mm positional accuracy of the end effector was designed and manufactured with carbon fiber epoxy composite material. The composite third robot arm was composed of the composite yoke, the composite cylindrical tubular structure and the aluminum flange.

After manufacturing the composite arm, the dynamic property and operational performance were compared to those of the hybrid third robot arm that was composed of the aluminum yoke, the composite tubular structure and the aluminum flange.

From the experiments, it was found that the composite third robot arm contributed to improving both the dynamic characteristics and operational performance of the articulated robot.  相似文献   


6.
倪维宇  张横  姚胜卫 《包装工程》2022,43(23):225-233
目的 为得到抗振性能良好的板壳结构,保证设备的正常工作,文中提出一种板壳阻尼复合结构多尺度优化设计方法。方法 以动柔度为目标,建立频域激励下和固定频率点激励下板壳阻尼复合结构中阻尼材料宏观分布和微结构协同设计的多尺度问题的数学模型,推导目标函数和约束条件对设计变量的灵敏度,并基于移动渐近线法求解优化数学模型。结果 所提多尺度设计方法可以有效获得板壳结构最优阻尼材料宏观布局和最优阻尼复合材料微结构构型,提高了结构的动力学性能,同时结果也表明涂敷阻尼复合材料结构的振动响应相较于仅涂敷单一阻尼材料的振动响应大幅减小。结论 研究表明,不同激励频率下阻尼材料的宏观分布形态不同,阻尼材料主要分布于结构模态振型位移的最大处和支撑端,通过加强结构的刚度,抑制了结构变形,减小了振动响应。微结构构型基本类似,其基本形态都是低刚度、高阻尼材料呈条状分布,条状分布的阻尼复合材料微结构在受弯方向上的刚度较大,可以有效抵制结构的弯曲变形。  相似文献   

7.
Shape memory alloys (SMAs) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable characteristics. Combining the unique properties of SMAs with other materials can create intelligent or smart composites. In this paper, epoxy resin composites filled with Ni–Ti alloy short fibers were developed. Microstructure was observed using digital HF microscope. The dynamic mechanical properties were investigated by measuring the first vibration mode of clamped cantilever beams and by dynamic mechanical analysis (DMA). Moreover, the natural frequency of SMA composites was predicted theoretically. As a result, the temperature dependency of vibration property and DMA characteristics is affected largely due to the addition of SMA short fibers. The vibrational characteristics of SMA composites can be improved by the addition of small amounts of SMA short fibers. The addition of 3.5 wt.% of SMA short fiber content to epoxy resin resulted in the maximum increment in both natural frequency and storage modulus. This suggested that there exists an optimum SMA fiber content for vibration characteristics.  相似文献   

8.
Mechanical design can be classified into stiffness design and strength design. In the stiffness design, the stiffness or deformation of members is concerned, and the enhancement of dynamic characteristics such as natural frequency or damping capacity of members or systems is also important. While, in the strength design, the primary concern is the enhancement of load carrying ability of members or systems.

Fiber reinforced composite materials offer a combination of strength and modulus that are either comparable to or better than many traditional metallic materials. Because of their low specific gravities, the strength-weight ratios, and modulus-weight ratios of these composite materials are much superior to those metallic materials. Composite materials can be tailored to meet the specific requirements of each particular design. Available design parameters are the choice of materials (fiber, matrix), the volume fraction of fiber and matrix, fabrication method, number of layers in a given direction, thickness of individual layers, type of layer (unidirectional or fabric), and the layer stacking sequence.

The greatest disadvantages of composite materials are the costs of the materials and the lack of well-defined design rules, therefore, composite materials should be applied in the right place with appropriate design rules. Up to now, the fiber reinforced composite structures are mainly employed in the strength design such as aircraft, spacecraft and vehicles.

In this paper, the novel application examples of composite structures to components for the robots, machine tools and automobiles are addressed considering the stiffness design issues of composite structures.  相似文献   


9.
In recent years, it has been found that composites co-cured with viscoelastic materials can enhance the damping capacity of a composite structural system with little reduction in stiffness and strength. Because of the anisotropy of the constraining layers, the damping mechanism of co-cured composites is quite different from that of conventional structures with metal constraining layers. This paper presents an analysis of the dynamic properties of multiple damping layer, laminated composite beams with anisotropic stiffness layers, by means of the finite element-based modal strain energy method. ANSYS 4.4A finite element software has been used for this study. The variation of resonance frequencies and modal loss factors of various beam samples with temperature is studied. Some of these results are compared with the closed-form theoretical results of an earlier published work. For obtaining optimium dynamic properties, the effects of different parameters, such as layer orientation angle and compliant layering, are studied. Also, the effect of using a combination of different damping materials in the system for obtaining stable damping properties over a wide temperature range is studied.  相似文献   

10.
Kin-tak Lau   《Materials & Design》2002,23(8):741-749
Recently, the development of shape memory alloy (SMA) actuators, in the forms of wire, thin film and stent have been found increasingly in the fields of materials science and smart structures and engineering. The increase in attraction for using these materials is due to their many unique materials, mechanical, thermal and thermal-mechanical properties, which in turn, evolve their subsequent shape memory, pseudo-elasticity and super-elasticity properties. In this paper, a common type of SMA actuator, Nitinol wires, were embedded into advanced composite structures to modulate the structural dynamic responses, in terms of natural frequency and damping ratio by using its shape memory and pseudo-elastic properties. A simple theoretical model is introduced to estimate the natural frequency of the structures before and after actuating the embedded SMA wires. The damping ratios of different SMA composite beams were measured through experimental approaches. The natural frequencies changed slightly at a temperature above the austenite finish temperature of composite beams with embedded non-prestrained SMA wires. However, the increase of the natural frequencies of the beams with embedded prestrained SMA wires were found in both the theoretical prediction and experimental measurements. The damping ratios of SMA composite beams increased with increasing the temperature of the embedded wires with and without being pre-strained. Compressive and local failures of the beams with high wire content are a possible explanation.  相似文献   

11.
In this paper, sandwich structures for micro-EDM machines are optimized by using parametric study varying composite geometries and parameters like stacking sequence, thickness and rib geometry. The structures are composed of fibre reinforced composites for skin material and resin concrete and PVC foam (Closed cell, Divinycell) for core materials. Column structure was designed by a beam with cruciform rib and performance indices such as static bending stiffness (EI) and specific bending stiffness (EI/ρ) for dynamic stability are examined by controlling the thickness and stacking sequence of composites. For the machine tool bed, which usually has a plate shape, was designed to have high stiffness in two directions at the same time controlling stacking sequence and rib geometry; that is, rib thickness and number of ribs. The sensitivity of design parameters like rib thickness and composite skin thickness was examined and the optimal condition for high stiffness structure was suggested. Finite element analysis was also performed to verify the static and dynamic robustness of the machine structure. L-shaped joint for combining bed and column of the micro-EDM machine was proposed and fabricated using adhesive bonding. The dynamic performance such as damping characteristics was investigated by vibration tests. From the results optimal configuration and materials for high precision micro-EDM machines are proposed.  相似文献   

12.
As a first step towards the development of simplified integrated computational tools for the dynamic and static modelling of smart structures, this work validates both theoretically and experimentally the implementation of a multilayered three-dimensional model based on the analogy between thermal strains and piezoelectric strains under MSC/NASTRAN. To assess the piezoelectric–thermal analogy for different loading conditions, the numerical results obtained from this model are first compared to the results obtained from a finite element reference model based on a three-dimensional piezoelectric formulation. An experimental assessment is also conducted on a clamped AS4/3501-6 carbon/epoxy composite beam structure excited in the vicinity of the clamped end using an embedded piezoelectric actuator. Results obtained from the dynamic response of the structure show that the properties of the insulating layer appear to have an important effect and thus demonstrate the need for their modelling. In the last part of the paper, as a tool for further development of the computational tools for smart structures, the piezoelectric–thermal analogy model is used with a large number of three-dimensional elements to describe the complexity of the strain and stress fields in the vicinity of the active region.  相似文献   

13.
频率相关自由阻尼层复合材料加筋板动力分析   总被引:1,自引:0,他引:1  
采用子空间迭代法和精细积分对敷设粘弹性阻尼层的含损伤复合材料加筋板结构进行了频率和动力响应分析。分析中对层合板和层合梁采用了Adams应变能法与Raleigh阻尼模型相结合的阻尼矩阵构造方法;对表面粘弹性阻尼材料则考虑了材料性质和耗散系数对激振频率与温度的依赖性,建立了频率相关粘弹性材料阻尼矩阵的计算方法。通过有限元分析,分别研究了敷设自由阻尼层无损伤和含分层损伤复合材料加筋板的自振频率和模态特征,并根据幅频曲线讨论了阻尼材料模量、耗散系数和阻尼层厚度等因素对结构响应的影响,提出的计算方法对通过合理选择阻尼层材料与几何参数来有效地控制加筋板结构的振动特性,具有一定的参考价值。  相似文献   

14.
Shape memory alloy (SMA) is commercially available for a variety of actuator and damping materials. Recently, SMA wires have also become commercially available for the design of smart composite structures because SMA wires with a small diameter can be easily produced. In this work, two types of SMA-based composites are presented for investigating the vibration characteristics. First, laminated composite plates containing unidirectional fine SMA wires are fabricated. By measuring the vibration mode of a clamped cantilever, the influence of both SMA arrangement and temperature on the vibration characteristics is made clear. Next, laminated composite plates with embedded woven SMA layer are fabricated. The stiffness tuning capability is evaluated by impact vibration tests with different temperatures. It is found that the stiffness tuning capability may be improved by increasing the volume fraction of SMAs and by controlling accurately the internal stress according to the phase transformation temperature of SMAs from martensite to austenite. The theoretical prediction on the natural frequency considering the SMAs behavior and laminated structures is proposed and their results agree reasonably with experimental ones.  相似文献   

15.
Thrust bearing design for high-speed composite air spindles   总被引:2,自引:0,他引:2  
The air spindles whose shafts are made of carbon fiber composite are appropriate for high-speed and high-precision machining such as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because the carbon fiber composite shaft has low rotational inertia, high damping ratio and high fundamental natural frequency.

The axial load capability and stiffness of air spindles for drilling operation are dependent on thrust bearings that are composed of air supply part mounted on the housing and rotating part mounted on the rotating shaft of spindle.

Since the stresses induced in the rotating part of thrust bearing by centrifugal force are very high at high-speed rotation, the axial stiffness and load capability of an air spindle should be designed considering the stresses induced by the centrifugal force as well as the natural frequency of rotating shaft to avoid the resonant whip vibration of the spindle.

In this work, the air supply part of a thrust air bearing for a high-speed composite air spindle was designed considering its axial stiffness and load capability. The rotating part of the thin thrust bearing was designed through finite element analysis considering the static and dynamic characteristics under axial load and the centrifugal force during high-speed rotation.  相似文献   


16.
针对弹性-粘弹性复合结构的动力学模型降阶问题,提出用Krylov子空间作为投影子空间进行模型减缩的方法。首先介绍了二阶时不变动力学模型的Krylov子空间的定义,并证明了经Krylov子空间方法降阶得到的模型具有与原模型的部分低频矩量相等的特性。然后给出了计算Krylov向量的算法。最后以一表面部分粘贴约束阻尼结构的正交异性悬臂板为例,分别用Krylov子空间方法和迭代动力缩聚法进行了模型降阶,并对原模型和降阶模型进行了频率响应分析,结果表明,采用Krylov子空间降阶后的模型能较好地保持原模型的动力学特性且降阶幅度大。  相似文献   

17.
研究了在简谐激励作用下复合材料加筋板基体微裂纹损伤的演化行为及其对加筋板动力特性的影响。基于平均微裂纹密度和断裂力学方法, 建立了复合材料加筋板基体微裂纹演化的刚度退化准则。由于该准则考虑了载荷作用周期数的影响, 从而能够更合理地分析周期性动载荷作用下基体微裂纹损伤演化规律。采用Mindlin一阶剪切理论和复合材料模态阻尼模型, 建立了复合材料加筋板动力分析的有限元方法, 研究了在简谐激励作用下, 含分层损伤复合材料加筋板振动过程中诱发的基体微裂纹损伤的演化、 刚度退化, 频率折减和动力响应。   相似文献   

18.
To maximize the productivity of precision products such as molds and dies, machine tools should be operated at high speeds without vibration. As the operation speeds of machine tools are increased, the vibration problem has become a major constraint of manufacturing of precision products. The two important functional requirements of machine tool bed for precision machine tools are high structural stiffness and high damping, which cannot be satisfied simultaneously if conventional metallic materials are used for bed structure because conventional high stiffness metals have low damping and vice versa. This paper presents the application of hybrid polymer concrete for precision machine tool beds. The hybrid polymer concrete bed composed of welded steel structure faces and polymer concrete core was designed and manufactured for a high-speed gantry type milling machine through static and dynamic analyses using finite element method. The developed hybrid machine tool bed showed good damping characteristics over wide range of frequency (η = 2.93–5.69%) and was stable during high speed machining process when the spindle angular speed and acceleration of slide were 35,000 rpm and 30 m/s2, respectively.  相似文献   

19.
Recently, the design and the manufacture of light robot end effectors with high stiffness have become important in order to reduce the deflection due to the self-weight and weight of glass panel, a part of LCD, as the size of glass panels as well as robot end effectors increases. The best way to reduce the deflection and vibration of end effectors without sacrificing the stiffness of end effectors is to employ fiber reinforced composite materials for main structural materials because composite materials have high specific stiffness and high damping. In this work, the end effector for loading and unloading large glass panels were designed and manufactured using carbon fiber epoxy composite honeycomb sandwich structures. Finite element analysis was used along with an optimization routine to design the composite end effector. A box type sandwich structure was employed to reduce the shear effect arising from the low modulus of honeycomb structure. The carbon fiber epoxy prepreg was hand-laid up on the honeycomb structure and cured in an autoclave. A special process was used to reinforce the two sidewalls of the box type sandwich structure. The weight reduction of the composite end effector was more than 50% compared to the weight of a comparable aluminum end effector. From the experiments, it was also found that the static and dynamic characteristics of the composite end effector were much improved compared to those of the aluminum end effector.  相似文献   

20.
含分层损伤复合材料加筋层合板的动承载能力   总被引:4,自引:3,他引:1       下载免费PDF全文
采用有限元方法研究了含穿透分层损伤复合材料加筋层合板的动力响应和承载能力。根据复合材料层合板一阶剪切理论, 推导了复合材料层合板单元的刚度阵和质量阵列式;同时采用Adams 应变能法与Rayleigh阻尼模型相结合的方法, 构造了相应的阻尼阵列式;为了防止在低阶模态中分层处出现的上、下子板不合理的嵌入现象, 建立了含分层损伤复合材料加筋层合板动力分析中分层分析模型和虚拟界面联接模型。并采用Tsai提出的刚度退化准则和动力响应分析的精细积分法, 对在动荷载作用下含分层损伤复合材料加筋层合板结构进行了破坏和承载能力分析。通过典型算例分析, 分别讨论了外载频率、分层深度、筋的位置以及破坏过程中刚度退化对含损伤复合材料加筋层合板动力响应特征和承载能力的影响, 得到了一些具有理论和工程价值的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号