首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
筋土界面特性是影响加筋土结构性能的重要因素之一,利用中型拉拔模型试验分析了界面正应力和黏性土含水量对格栅黏性土界面相互作用特性的影响,试验结果表明黏性土含水量对格栅极限抗拔力、界面黏聚力和摩擦系数影响明显。不同界面正应力下格栅极限抗拔力在含水量较小时差别显著,随着黏性土含水量增加,格栅极限抗拔力和界面摩擦系数呈现减少趋势,而筋土界面间黏聚力先增大后减小,且当含水量达到塑限含水量时,三者均趋于稳定。格栅抗拔力位移曲线均经历线性和非线性增加以及拉拔极限阶段,并随含水量增加,抗拔力位移曲线由线性增长向极限状态发展的中间阶段逐渐缩短。在拉拔最大载荷下持续一段时间后卸载,发现格栅的横肋应变有增大的趋势,而纵肋应变呈现减小的趋势。  相似文献   

2.
土工格栅界面摩擦特性试验研究   总被引:28,自引:1,他引:28  
土工格栅与土的界面作用特性直接影响着加筋土挡墙的安全与稳定性。因此,土工格栅与填料的界面技术指标在加筋土挡墙的设计中至关重要。本文在从试验方法、加载方式、试验箱侧壁边界效应和尺寸效应、填料厚度、压实度以及筋材夹持状况等几方面分析土工格栅界面摩擦特性影响因素基础上,进行了土工格栅在砂砾料和粘性土中的拉拔试验和直剪试验。试验结果表明:土工格栅与砂砾料接触面抗剪强度较高,而与粘土接触面抗剪强度很低;对于加筋土挡墙拉拔力较大的层位,应选用刚度大的土工格栅和砂砾料为填料。直剪摩擦试验不适合确定土工格栅接触面的抗剪强度。该试验结果对土工格栅加筋土挡土墙的设计具有重要的参考价值。  相似文献   

3.
花超  姚文美 《土工基础》2019,(5):613-617
采用拉拔试验研究了预应变土工格栅与砂垫层的界面特性,通过对比分析试验结果,对法向应力、垫层厚度和预应变初值对筋土界面特性的影响进行了研究,结果显示:砂垫层厚度为5 cm时,低应力条件下预应变土工格栅与普通格栅的拉拔阻力峰值相差不大,随着法向应力的增大,预应变土工格栅的抗拔性逐渐优于普通格栅,而应变软化现象也愈明显;法向应力为50 kPa时,垫层厚度的增大对格栅抗拔性有一定提高,当厚度达到15 cm后提高效果明显减弱,且高预应变水平的土工格栅随着垫层厚度的增大会出现应变软化现象。最后通过数据拟合得到了界面抗剪强度包络线,预应变加筋法能显著提高格栅与砂垫层界面似摩擦系数,减小界面似粘聚力,可为预应变加筋法的推广提供参考。  相似文献   

4.
土工格栅与填料间作用特性对加筋土结构设计至关重要。为研究界面宏–细观力学响应关联及填料粒径对加筋效果的影响,采用三维离散元方法对三向土工格栅拉拔过程进行仿真模拟,系统分析拉拔作用下筋材及颗粒的力学响应,揭示拉拔力发展与细观组构指标演化规律,建立基于拉拔试验结果的格栅加筋性能评价方法。研究结果表明,界面颗粒速度场可即时反映筋土相互作用;选取组构演化系数描述宏观强度的发展是合适的;在一定粒径范围内,格栅加筋性能主要受控于颗粒体系比表面积,加筋土临塑荷载随填料粒径的增大而降低。  相似文献   

5.
研制了一台新型可视自动采集数据的土工拉拔试验装置,可用于多种土工材料和填料作用下的拉拔试验。该装置改进了加载系统和反力系统,实现了拉拔界面的可视与数据采集的自动化,并可量测土工材料不同嵌固长度处的位移,获取土工材料变形值,探索筋土作用过程中筋材受力机理及界面土体位移变化规律。使用新研制的试验装置开展了以砾类粗粒土为填料的格栅拉拔试验,结果表明:上覆荷载增大,土中格栅的应变变小,土体与格栅的界面摩擦和嵌固作用越显著;筋土界面处土体颗粒存在平移及转动两种运动模式,且界面处土体形成稳定的位移集中带。  相似文献   

6.
土工格栅通过筋土界面相互作用能起到很好的加筋效果,在许多工程中得到了广泛运用。拉拔试验是研究筋土界面相互作用的重要手段之一。通过室内拉拔试验,对竖向荷载、填料密实度以及试验类型对格栅拉拔力的影响规律开展研究,试验结果表明:在高密实度的填料中,随着筋-土界面位移的发展,填料的剪胀现象越明显;填料密实度小,竖向压力大时,剪胀趋势不明显;填料密实度越大,土体剪胀趋势越明显;土体的密实度将直接影响到格栅的加筋效果;对于土体的剪胀,存在一临界点,当格栅拉拔位移大于此临界点时,土体的剪胀趋势将显著发生。  相似文献   

7.
土工格栅拉拔试验影响因素分析   总被引:2,自引:0,他引:2  
土工格栅以其良好的工程特性常用作加筋土结构筋材。本文从试验加载方式、拉拔箱侧壁边界效应和尺寸效应、填料厚度和压实度以及筋材夹持情况等几方面分析了影响拉拔试验的主要因素 ,目的是指导如何正确进行拉拔试验以分析土工格栅与填料的作用机理  相似文献   

8.
土工格栅拉拔试验影响因素分析   总被引:5,自引:0,他引:5  
杨广庆  杨春玲 《地下空间》2004,24(1):31-32,63
土工格栅以其良好的工程特性常用作加筋土结构筋材。本文从试验加载方式、拉拔箱侧壁边界效应和尺寸效应、填料厚度和压实度以及筋材夹持情况等几方面分析了影响拉拔试验的主要因素,目的是指导如何正确进行拉拔试验以分析土工格栅与填料的作用机理。  相似文献   

9.
通过现场采集双级模块式土工格栅加筋土挡墙+加筋土边坡组合支挡结构施工过程中土工格栅拉应变、孔隙水压力数据,分析得出整个施工期间,加筋土挡墙各层土工格栅拉筋应变随填土高度增加而增大,增长速率逐渐减小;孔隙水压力在施工过程中受填料排水性、当地降水等影响处于不断调整状态。  相似文献   

10.
土工合成材料与细粒尾矿界面作用特性的试验研究   总被引:10,自引:2,他引:10  
以有色金属铜矿的细粒尾矿为加筋填料土,利用拉拔试验,研究土工合成材料(加筋带和土工格栅)在填料土不同密实度、含水量及垂直荷载作用下,土工合成材料与填料土的界面作用特性,以及细粒尾矿加筋的作用机理。  相似文献   

11.
The paper investigates the feasibility of using fine-grained soil as backfill material of geosynthetic-reinforced walls and slopes, through a laboratory study on pullout behavior of geogrids in granular layers. A series of pullout tests was carried out on an HDPE uniaxial geogrid in thin sand and gravel layers that were embedded in clay specimens.Aside from different soil arrangements, the influences of moisture content and overburden pressure on the geogrid pullout behavior is assessed and discussed. The tests were carried out at four different gravimetric water contents (GWC) on the dry and wet sides of the clay optimum moisture content (OMC), and overburden pressure values within the range σv = 25–100 kPa. Particle Image Velocimetry (PIV) was used to capture digital images during the tests, which were processed to help with the interpretation and improved understanding of the soil-geogrid interactions at different GWC values. Results show that embedding geogrid reinforcement in layers of sand or gravel can significantly increase the pullout resistance in an otherwise moist clay backfill, and this improved pullout efficiency is greater at higher overburden pressures. The improvement in pullout capacity was observed in clay specimens compacted at both the dry and wet sides of the OMC.  相似文献   

12.
The pullout test is one of the methods commonly used to study pullout behavior of reinforcements. In the current research, large pullout tests (i.e. 100 × 60 × 60 cm) have been conducted to investigate the possibility of pullout resistance enhancement of clays reinforced with HDPE geogrid embedded in thin layers of sand. Pullout tests on clay–geogrid, sand–geogrid and clay–sand–geogrid samples have been conducted at normal pressures of 25, 50 and 100 kPa. Numerical modeling using finite element method has also been used to assess the adequacy of the box and geogrid sizes to minimize boundary and scale effects. Experimental results show that provision of thin sand layers around the reinforcement substantially enhances pullout resistance of clay soil under monotonic loading conditions and the effectiveness increases with increase in normal pressures. The improvement is more pronounced at higher normal pressures and an optimum sand layer thickness of 8 cm has been determined for maximum enhancement. Results of numerical analysis showed the adequacy of the box and geogrid length adopted as well as a relatively good agreement with experimental results.  相似文献   

13.
洪英广  王宁  卢萍  姚勇 《建筑科学》2012,28(9):64-67
通过室内拉拔试验,研究压实度对土工格栅与红层泥岩界面拉拔性状的影响,试验结果表明,土工格栅在红层泥岩中主要表现为拔出破坏。随着压实度的增大,在一定程度上提高筋土界面的峰值剪应力;在压实度一定的情况下,随着竖向应力的增加,筋土界面剪应力峰值增大,其对应的剪切位移减小。由于土与土工格栅接触面的剪胀造成该类接触面的界面剪应力峰值与竖向应力不再是线性关系。  相似文献   

14.
Geogrid pullout tests have been regarded as the most direct and effective way to describe the interfacial behavior between geogrid and soil. To investigate the coupled effects of geogrid transverse members and top-loading boundaries on the geogrid-soil interaction, numerical simulations of geogrid pullout tests using the Discrete Element Method (DEM) were carried out in this study. The rigid top boundary was simulated by a rigid wall, while the flexible top boundary was modeled with a string of bonded particles that could rotate and move up and down freely. The coupled effects of geogrid transverse members and top boundary conditions on the geogrid-soil interaction under pullout loads were visualized not only by the force distributions along the geogrids and in the specimens but also by the displacements of soil particles and geogrids. Additionally, the quantitative geogrid force and strain distributions along the geogrids, the lateral force distributions on the front walls, and the vertical displacements of top boundaries also showed the influence of transverse members on the geogrid pullout behavior considering the rigid and flexible top boundaries. The DEM investigation results of this study may provide helpful guidelines for regulating the geogrid pullout test apparatus and methods.  相似文献   

15.
Experimental and numerical investigations have been carried out on behavior of pullout resistance of embedded circular plate with and without geogrid reinforcement layers in stabilized loose and dense sands using a granular trench.Different parameters have been considered,such as the number of geogrid layers,embedment depth ratio,relative density of soil and height ratio of granular trench.Results showed that,without granular trench,the single layer of geogrid was more effective in enhancing the pullout capacity compared to the multilayer of geogrid reinforcement.Also,increasing the soil density and embedment depth ratio led to an increase in the uplift capacity.When soil was improved with the granular trench,the uplift force significantly increased.The granular trench improved the uplift load in dense sand more,as compared to the same symmetrical plate embedded in loose sand.Although it was observed that,in geogrid-reinforced granular trench condition,the ultimate pullout resistance at failure increased as the number of geogrid layers increased up to the third layer,and the fifth layer had a negligible effect in comparison with the third layer of reinforcement.Finite element analyses with hardening soil model for sand and CANAsand constitutive model for granular trench were conducted to investigate the failure mechanism and the associated rupture surfaces utilized.The response of granular material in the proposed model is an elastoplastic constitutive model derived from the CANAsand model,which uses a non-associated flow rule along with the concept of the state boundary surface possessing a critical and a compact state.It was observed that the granular trench might change the failure mechanism from deep plate to shallow plate as the failure surface can extend to the ground surface.The ultimate uplift capacity of anchor and the variation of surface deformation indicated a close agreement between the experiment and numerical model.  相似文献   

16.
A series of pullout tests were carried out by using a highly extensible geogrid with the different longitudinal member and transverse member ratios to investigate the influence of the longitudinal and transverse members of a highly extensible geogrid on the pullout behavior. From the results, the following were made clear: the mobilization of bond stress depends on the strain of the geogrid; the influence zones of longitudinal members become isolated with the increase of the longitudinal member spacing; the mobilization of transverse member resistance depends on the displacement of the geogrid at the location of that transverse member; and the contribution of longitudinal members to the pullout force is more significant than that of transverse members during the deformation stage in the case of the highly extensible geogrid, since large elongation occurs in the geogrid, which restricts the mobilization of the full effect of transverse members. Furthermore, the mobilization mechanisms of the longitudinal member and transverse member effects are discussed.  相似文献   

17.
This paper presents the details of an experimental investigation using large-scale inclined pullout apparatus on sheet geosynthetic and geogrid embedded in run-out, I-type, and L-type anchors. The influence of the type of sand on the behaviour of the sheet and the geogrid is also investigated. The results show that in both the sheet and the geogrid, I-type anchor provides approximately 50% and L-type anchor provides 90% higher pullout force than the run-out anchor. The maximum pullout force increases by more than 20% as the inclination of pullout force increases from 0° to 30° for both the sheet and the geogrid.  相似文献   

18.
通过有限元Plaxis软件,对厦深高速铁路潮汕车站的超大面积深厚软土桩-网复合地基承载性状进行全断面数值模拟,系统地分析了其沉降变形、土压力变化、桩体受力、土工格栅拉力、超孔隙水压力变化等情况。结果表明:土层的沉降随填筑高度的变化具有一定的间歇性,沉降主要集中于加固区下面的下卧层中;土压力的发展变化呈现出明显的阶梯状,并贯穿于整个施工阶段。在竖向,管桩桩体轴力的峰值出现在淤泥质黏土层顶部,而没有出现在桩体顶部;在横向,沿路基中心向外,桩体剪力及弯矩依次逐渐增大。土工格栅的最大拉力出现在桩帽边缘处,桩间的拉力较小,在管桩顶部加设桩帽有助于均匀格栅中的拉力,避免局部应力集中;桩端土层以下超孔隙水压力随填筑加载而增长的幅度较大,桩端土层以上则较小,桩体有效地将上部荷载传递到深部较好土层,减轻了浅部软弱土层的负担,从而达到控制沉降的目的。  相似文献   

19.
《Soils and Foundations》2007,47(3):517-532
The objective of this paper is to examine the influence of geogrid layer on the integrity of clay liners of landfills. A series of centrifuge model tests were performed on model clay liners subjected to non-uniform settlements with and without a geogrid layer embedded within the top one-third portion of the clay liner moist-compacted on the wet side of its optimum moisture content at 40 g. The model clay liner material has been selected in such a way that it envelopes the material characteristics of the clay liners, which are used for constructing an impermeable barrier in a lining system. By maintaining type and location of the geogrid within the clay liner as constant, the thickness of clay liner is varied to check the possibility of reducing the thickness of a geogrid reinforced clay liner. Digital image analysis technique was employed to ascertain the initiation of cracking and to compute strains both on the surface and along the cross-section of the clay liner with and without any geogrid layer. It was observed that clay liners compacted at moulding water content towards wet side of their OMC found to experience multiple cracking at the onset of non-uniform settlements. Contrary to this, geogrid reinforced clay liner was observed to sustain large distortions and experience only tiny cracks limited up to a location of a geogrid. With an increase in thickness of the clay liner reinforced with a geogrid, geogrid reinforced compacted clay liner was observed to retain its integrity and restrains cracking completely.  相似文献   

20.
This paper deals with the interaction between the geogrid and the tire chip–sand mixture including the determination of the index properties of the backfill materials, the shear strength parameters, the interaction coefficients, and the efficiency of geogrid reinforcements in tire chip–sand backfills. Numerous experiments including index tests, compaction tests, pullout tests, and large-scale direct shear tests were conducted. Saint–Gobain (geogrid A) and Polyfelt (geogrid B) were selected as reinforcing materials. Tire chip–sand mixtures with mixing ratios of 0:100, 30:70, 40:60, and 50:50 by weight were used as fill materials. The test results revealed that the dry unit weight of tire chip–sand mixtures depended more on the sand content, and less on the water content. The mixture at the mixing ratio of 30:70 by weight or 50:50 by volume was found to be the most suitable fill material compared to other mixing ratios. The pullout resistance and the pullout interaction coefficients of geogrid A were slightly higher than those of geogrid B. In contrast, in the direct shear resistance, the direct shear interaction coefficients, and the efficiency values of geogrid B were slightly higher than those of geogrid A. Since geogrid B has the needed uniaxial reinforcement properties and its sufficient interaction characteristics with tire chip–sand mixture, the geogrid B was utilized in this study. The interaction coefficients between the tire chip–sand backfill with 30:70 mixing ratio by weight were found to be 0.71 in pullout mode and 0.92 in direct shear mode for geogrid B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号