首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we will introduce composite finite elements for solving elliptic boundary value problems with discontinuous coefficients. The focus is on problems where the geometry of the interfaces between the smooth regions of the coefficients is very complicated. On the other hand, efficient numerical methods such as, e.g., multigrid methods, wavelets, extrapolation, are based on a multi-scale discretization of the problem. In standard finite element methods, the grids have to resolve the structure of the discontinuous coefficients. Thus, straightforward coarse scale discretizations of problems with complicated coefficient jumps are not obvious. In this paper, we define composite finite elements for problems with discontinuous coefficients. These finite elements allow the coarsening of finite element spaces independently of the structure of the discontinuous coefficients. Thus, the multigrid method can be applied to solve the linear system on the fine scale. We focus on the construction of the composite finite elements and the efficient, hierarchical realization of the intergrid transfer operators. Finally, we present some numerical results for the multigrid method based on the composite finite elements (CFE–MG).  相似文献   

2.
Iterative methods with variable preconditioners of additive type are proposed. The scaling factors of each summand in the additive preconditioners are optimized within each iteration step. It is proved that the presented methods converge at least as fast as the Richardson's iterative method with the corresponding additive preconditioner with optimal scaling factors. In the presented numerical experiments the suggested methods need nearly the same number of iterations as the usual preconditioned conjugate gradient method with the corresponding additive preconditioner with numerically determined fixed optimal scaling factors. Received: June 10, 1998; revised October 16, 1998  相似文献   

3.
We consider multigrid methods for problems in linear elasticity which are robust with respect to the Poisson ratio. Therefore, we consider mixed approximations involving the displacement vector and the pressure, where the pressure is approximated by discontinuous functions. Then, the pressure can be eliminated by static condensation. The method is based on a saddle point smoother which was introduced for the Stokes problem and which is transferred to the elasticity system. The performance and the robustness of the multigrid method are demonstrated on several examples with different discretizations in 2D and 3D. Furthermore, we compare the multigrid method for the saddle point formulation and for the condensed positive definite system. Received February 5, 1999; revised October 5, 1999  相似文献   

4.
Summary The Boundary Element Tearing and Interconnecting (BETI) methods were recently introduced as boundary element counterparts of the well established Finite Element Tearing and Interconnecting (FETI) methods. Here we combine the BETI method preconditioned by the projector to the “natural coarse grid” with recently proposed optimal algorithms for the solution of bound and equality constrained quadratic programming problems in order to develop a theoretically supported scalable solver for elliptic multidomain boundary variational inequalities such as those describing the equilibrium of a system of bodies in mutual contact. The key observation is that the “natural coarse grid” defines a subspace that contains the solution, so that the preconditioning affects also the non-linear steps. The results are validated by numerical experiments.   相似文献   

5.
We present a method for discretizing and solving general elliptic partial differential equations on sparse grids employing higher order finite elements. On the one hand, our approach is charactarized by its simplicity. The calculation of the occurring functionals is composed of basic pointwise or unidirectional algorithms. On the other hand, numerical experiments prove our method to be robust and accurate. Discontinuous coefficients can be treated as well as curvilinearly bounded domains. When applied to adaptively refined sparse grids, our discretization results to be highly efficient, yielding balanced errors on the computational domain.  相似文献   

6.
S. A. Sauter 《Computing》2006,78(2):101-115
It is well known that standard h-version finite element discretisations using lowest order elements for Helmholtz' equation suffer from the following stability condition: ``The mesh width h of the finite element mesh has to satisfy k 2 h≲1', where k denotes the wave number. This condition rules out the reliable numerical solution of Helmholtz equation in three dimensions for large wave numbers k≳50. In our paper, we will present a refined finite element theory for highly indefinite Helmholtz problems where the stability of the discretisation can be checked through an ``almost invariance' condition. As an application, we will consider a one-dimensional finite element space for the Helmholtz equation and apply our theory to prove stability under the weakened condition hk≲1 and optimal convergence estimates. Dedicated to Prof. Dr. Ivo Babuška on the occasion of his 80th birthday.  相似文献   

7.
Á. Baran  G. Stoyan 《Computing》2007,79(1):1-21
We consider the non-conforming Gauss-Legendre finite element family of any even degree k≥4 and prove its inf-sup stability without assumptions on the grid. This family consists of Scott-Vogelius elements where appropriate k-th-degree non-conforming bubbles are added to the velocities – which are trianglewise polynomials of degree k.  相似文献   

8.
S. Börm 《Computing》2006,77(1):1-28
For hierarchical matrices, approximations of the matrix-matrix sum and product can be computed in almost linear complexity, and using these matrix operations it is possible to construct the matrix inverse, efficient preconditioners based on approximate factorizations or solutions of certain matrix equations. -matrices are a variant of hierarchical matrices which allow us to perform certain operations, like the matrix-vector product, in ``true' linear complexity, but until now it was not clear whether matrix arithmetic operations could also reach this, in some sense optimal, complexity. We present algorithms that compute the best-approximation of the sum and product of two -matrices in a prescribed -matrix format, and we prove that these computations can be accomplished in linear complexity. Numerical experiments demonstrate that the new algorithms are more efficient than the well-known methods for hierarchical matrices.  相似文献   

9.
B. Heinrich  K. Pönitz 《Computing》2005,75(4):257-279
The paper is concerned with the Nitsche mortaring in the framework of domain decomposition where non-matching meshes and weak continuity of the finite element approximation at the interface are admitted. The approach is applied to singularly perturbed reaction-diffusion problems in 2D. Non-matching meshes of triangles being anisotropic in the boundary layers are applied. Some properties as well as error estimates of the Nitsche mortar finite element schemes are proved. In particular, using a suitable degree of anisotropy of triangles in the boundary layers of a rectangle, convergence rates as known for the conforming finite element method are derived. Numerical examples illustrate the approach and the results.  相似文献   

10.
J. K. Kraus 《Computing》2005,74(4):319-335
This paper presents a particular construction of neighborhood matrices to be used in the computation of the interpolation weights in AMG (algebraic multigrid). The method utilizes the existence of simple interpolation matrices (piecewise constant for example) on a hierarchy of coarse spaces (grids). Then one constructs by algebraic means graded away coarse spaces for any given fine-grid neighborhood. Next, the corresponding stiffness matrix is computed on this graded away mesh, and the actual neighborhood matrix is obtained by computing the multilevel Schur complement of this matrix where degrees of freedom outside the neighborhood have to be eliminated. The paper presents algorithmic details, provides model complexity analysis as well as some comparative tests of the quality of the resulting interpolation based on the multilevel Schur complements versus element interpolation based on the true element matrices.  相似文献   

11.
Michael Griebel 《Computing》1998,61(2):151-179
We present a multilevel approach for the solution of partial differential equations. It is based on a multiscale basis which is constructed from a one-dimensional multiscale basis by the tensor product approach. Together with the use of hash tables as data structure, this allows in a simple way for adaptive refinement and is, due to the tensor product approach, well suited for higher dimensional problems. Also, the adaptive treatment of partial differential equations, the discretization (involving finite differences) and the solution (here by preconditioned BiCG) can be programmed easily. We describe the basic features of the method, discuss the discretization, the solution and the refinement procedures and report on the results of different numerical experiments.  相似文献   

12.
We consider a mixed covolume method for a system of first order partial differential equations resulting from the mixed formulation of a general self-adjoint elliptic problem with a variable full diffusion tensor. The system can be used to model the transport of a contaminant carried by a flow. We use the lowest order Raviart-Thomas mixed finite element space. We show the first order convergence in L 2 norm and the superconvergence in certain discrete norms both for the pressure and velocity. Finally some numerical examples illustrating the error behavior of the scheme are provided. Supported by the National Natural Science Foundation of China under grant No. 10071044 and the Research Fund of Doctoral Program of High Education by State Education Ministry of China.  相似文献   

13.
G. Matthies  L. Tobiska 《Computing》2002,69(2):119-139
 One of the most popular pairs of finite elements for solving mixed formulations of the Stokes and Navier–Stokes problem is the Q k −P k−1 disc element. Two possible versions of the discontinuous pressure space can be considered: one can either use an unmapped version of the P k−1 disc space consisting of piecewise polynomial functions of degree at most k−1 on each cell or define a mapped version where the pressure space is defined as the image of a polynomial space on a reference cell. Since the reference transformation is in general not affine but multilinear, the two variants are not equal on arbitrary meshes. It is well-known, that the inf-sup condition is satisfied for the first variant. In the present paper we show that the latter approach satisfies the inf-sup condition as well for k≥2 in any space dimension. Received January 31, 2001; revised May 2, 2002 Published online: July 26, 2002  相似文献   

14.
Walter Zulehner 《Computing》2000,65(3):227-246
In this paper smoothing properties are shown for a class of iterative methods for saddle point problems with smoothing rates of the order 1/m, where m is the number of smoothing steps. This generalizes recent results by Braess and Sarazin, who could prove this rates for methods where, in the context of the Stokes problem, the pressure correction equation is solved exactly, which is not needed here. Received December 4, 1998; revised April 14, 2000  相似文献   

15.
Recently, the adaptive finite element methods have gained a very important position among numerical procedures for solving ordinary as well as partial differential equations arising from various technical applications. While the classical a posteriori error estimates are oriented to the use in h-methods the contemporary higher order hp-methods usually require new approaches in a posteriori error estimation.  相似文献   

16.
Q. Hu 《Computing》2005,74(2):101-129
In this paper, we are concerned with the non-overlapping domain decomposition method (DDM) with nonmatching grids for three-dimensional problems. The weak continuity of the DDM solution on the interface is imposed by some Lagrange multiplier. We shall first analyze the influence of the numerical integrations over the interface on the (non-conforming) approximate solution. Then we will propose a simple approach to construct multiplier spaces, one of which can be simply spanned by some smooth basis functions with local compact supports, and thus makes the numerical integrations on the interface rather simple and inexpensive. Also it is shown this multiplier space can generate an optimal approximate solution. Numerical results are presented to compare the new method with the point to point method widely used in engineering.  相似文献   

17.
C. Pflaum 《Computing》2002,69(4):339-352
In this paper, we present a new approach to construct robust multilevel algorithms for elliptic differential equations. The multilevel algorithms consist of multiplicative subspace corrections in spaces spanned by problem dependent generalized prewavelets. These generalized prewavelets are constructed by a local orthogonalization of hierarchical basis functions with respect to a so-called local coarse-grid space. Numerical results show that the local orthogonalization leads to a smaller constant in strengthened Cauchy-Schwarz inequality than the original hierarchical basis functions. This holds also for several equations with discontinuous coefficients. Thus, the corresponding multilevel algorithm is a fast and robust iterative solver. Received November 13, 2001; revised October 21, 2002 Published online: December 12, 2002  相似文献   

18.
S. Shu  D. Sun  J. Xu 《Computing》2006,77(4):347-377
In this paper, we will design and analyze a class of new algebraic multigrid methods for algebraic systems arising from the discretization of second order elliptic boundary value problems by high-order finite element methods. For a given sparse stiffness matrix from a quadratic or cubic Lagrangian finite element discretization, an algebraic approach is carefully designed to recover the stiffness matrix associated with the linear finite element disretization on the same underlying (but nevertheless unknown to the user) finite element grid. With any given classical algebraic multigrid solver for linear finite element stiffness matrix, a corresponding algebraic multigrid method can then be designed for the quadratic or higher order finite element stiffness matrix by combining with a standard smoother for the original system. This method is designed under the assumption that the sparse matrix to be solved is associated with a specific higher order, quadratic for example, finite element discretization on a finite element grid but the geometric data for the underlying grid is unknown. The resulting new algebraic multigrid method is shown, by numerical experiments, to be much more efficient than the classical algebraic multigrid method which is directly applied to the high-order finite element matrix. Some theoretical analysis is also provided for the convergence of the new method.  相似文献   

19.
B. Heinrich  B. Jung 《Computing》2007,80(3):221-246
The Fourier method is combined with the Nitsche-finite-element method (as a mortar method) and applied to the Dirichlet problem of the Poisson equation in three-dimensional axisymmetric domains with reentrant edges generating singularities. The approximating Fourier method yields a splitting of the 3D problem into a set of 2D problems on the meridian plane of the given domain. For solving the 2D problems bearing corner singularities, the Nitsche-finite-element method with non-matching meshes and mesh grading near reentrant corners is applied. Using the explicit representation of some singularity function of non-tensor product type, the rate of convergence of the Fourier-Nitsche-mortaring is estimated in some H 1-like norm as well as in the L 2-norm for weak regularity of the solution. Finally, some numerical results are presented.   相似文献   

20.
Ralf Hiptmair 《Computing》2000,64(2):97-122
The vector potential of a solenoidal vector field, if it exists, is not unique in general. Any procedure that aims to determine such a vector potential typically involves a decision on how to fix it. This is referred to by the term gauging. Gauging is an important issue in computational electromagnetism, whenever discrete vector potentials have to be computed. In this paper a new gauging algorithm for discrete vector potentials is introduced that relies on a hierarchical multilevel decomposition. With minimum computational effort it yields vector potentials whose L 2-norm does not severely blow up. Thus the new approach compares favorably to the widely used co-tree gauging. Received May 27, 1999; revised October 22, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号