首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent to which exogenous 18∶3(n−3) and 18∶3(n−6) were desaturated and elongated and the degree to which they and their derivatives altered the unsaturation index of cell glycerolipids were compared using clone 4 MDCK cells grown in lipid- and serum-free medium. Despite differences in the degree of unsaturation of the individual polyunsaturated fatty acids produced from 18∶3(n−3) or 18∶3(n−6), the unsaturation index of phospholipids increased similarly from 0.7 in control cells grown in serum- and lipid-free medium to ca. 1.6 in those supplemented with fatty acid. The added fatty acids had little effect on cell growth. The conversion of 18∶3(n−6) to 20∶3(n−6) and 20∶4(n−6) was more rapid than that of 18∶3(n−3) to 20∶4(n−3) and 20∶5(n−3). No significant quantities of 20∶3(n−3) or 18∶4(n−3) were noted. When both 18∶3 isomers were supplied simultaneously, marked differences in the amounts of some species of n−3 and n−6 polyunsaturated fatty acids were observed. The presence of 18∶3(n−6) and/or its derivatives suppressed levels of 20∶4(n−3) and 20∶5(n−3), perhaps through inhibition of the Δ6 and Δ5 desaturases responsible for their synthesis from 18∶3(n−3). Similarly 18∶3(n−3), and/or its longer more unsaturated derivatives, diminished the formation of 20∶4(n−6) from 18∶3(n−6). No marked effect on the products derived from elongation alone were observed.  相似文献   

2.
The combined effects of age and dietary n−6 and n−3 fatty acids were studied in 3-, 6- and 9-month-old rats. At each age, two groups were fed diets containing 5% (w/w) of vegetable oils rich in either 18∶3n−6 (borage group) or 18∶3n−6 plus 18∶4n−3 (black currant group), for a period increasing with age. A control group was fed the essential fatty acids 18∶2n−6 and 18∶3n−3 only. For each group, Δ6, Δ5 and δ9 desaturase activities were measured in liver microsomes, and fatty acid composition was determined in microsomal phospholipids. Desaturase activity varied as a function of age and dietary lipids. Δ6 Desaturation of 18∶3n−3 was more sensitive to these factors while Δ6 desaturation of 18∶2n−6 and Δ9 desaturation were more dependent on season than the other two. Desaturase activity was influenced more by the black currant than by the borage diet, especially at 6 and 9 months of age. A large proportion of arachidonic acid was maintained in the microsomes independent of the diet. Changes in the fatty acid composition did not strictly reflect the differences in desaturase activities. The effects of the two factors (age and diet) on the activities of the desaturases are complex, suggesting that the enzymes are susceptible to other factors as well.  相似文献   

3.
Neurospora crassa incorporated exogenous deuterated palmitate (16∶0) and 14C-labeled oleate (18∶1Δ9) into cell lipids. Of the exogenous 18∶1Δ9 incorporated, 59% was desaturated to 18∶2Δ9,12 and 18∶3Δ9,12,15. Of the exogenous 16∶0 incorporated, 20% was elongated to 18∶0, while 37% was elongated and desaturated into 18∶1Δ9, 18∶2Δ9,12, and 18∶3Δ9,12,15. The mass of unsaturated fatty acids in phospholipid and triacylglycerol is 12 times greater than the mass of 18∶0. Deuterium label incorporation in unsaturated fatty acids is only twofold greater than in 18∶0, indicating a sixfold preferential use of 16∶0 for saturated fatty acid synthesis. These results indicate that the release of 16∶0 from fatty acid synthase is a key control point that influences fatty acid composition in Neurospora.  相似文献   

4.
Brenner RR  Ayala S  Garda HA 《Lipids》2001,36(12):1337-1345
Dexamethasone depresses Δ6 and Δ5 and increases Δ9 desaturase and synthase activities. Therefore, we investigated the effect on the fatty acid composition of microsomal liver lipids and phosphatidylcholine (PtdCho) molecular species. After 15 d of treatment we found a notable decrease in arachidonic acid, a small decrease in stearic acid, and increases of linoleic, oleic, palmitoleic, and palmitic acids in liver microsomal total lipids and PtdCho. The study of the distribution of the PtdCho molecular species indicated that 18∶0/20∶4n−6, 16∶0/20∶4n−6, and 16∶0/18∶2n−6 predominated in the control animals. Dexamethasone, as expected because of its depressing effect on arachidonic acid synthesis and activation of oleic and palmitic acid synthesis, evoked a very significant decrease in 18∶0/20∶4n−6 PtdCho (P<0.001) and an important increase in 16∶0/18∶2n−6. The invariability of 16∶0/20∶4n−6 PtdCho could be related to the antagonistic effect of arachidonic and palmitic acid synthesis. PtdCho species containing oleic acid were not significant. The bulk fluidity and dynamic properties of the microsomal lipid bilayer measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene and 4-trimethylammonium-phenyl-6-phenyl-1,3,5-hexatriene showed no significant modification, probably owing to a compensatory effect of the different molecular species, but changes of particular domains not detected by this technique are possible. However, the extremely sensitive Laurdan detected increased lipid packing in the less-fluid domains of the polar-nonpolar interphase of the bilayer, possibly evoked by the change of molecular species and cholesterol/phospholipid ratio. The most important effect found is the decrease of arachidonic acid pools in liver phospholipids as one of the corresponding causes of dexamethasone-dependent pharmacological effects.  相似文献   

5.
During heat treatment, polyunsaturated fatty acids and specifically 18∶3n−3 can undergo geometrical isomerization. In rat tissues, 18∶3 Δ9c, 12c, 15t, one of thetrans isomers of linolenic acid, can be desaturated and elongated to givetrans isomers of eicosapentaenoic and docosahexaenoic acids. The present study was undertaken to determine whether such compounds are incorporated into brain structures that are rich in n−3 long-chain polyunsaturated fatty acids. Two fractions enriched intrans isomers of α-linolenic acid were prepared and fed to female adult rats during gestation and lactation. The pups were killed at weaning. Synaptosomes, brain microvessees and retina were shown to contain the highest levels (about 0.5% of total fatty acids) of thetrans isomer of docosahexaenoic acid (22∶6 Δ4c, 7c, 10c, 13c, 16c, 19t). This compound was also observed in myelin and sciatic nerve, but to a lesser extent (0.1% of total fatty acids). However, the ratios of 22∶6trans to 22∶6cis were similar in all the tissues studied. When the diet was deficient in α-linolenic acid, the incorporation oftrans isomers was apparently doubled. However, comparison of the ratios oftrans 18∶3n−3 tocis 18∶3n−3 in the diet revealed that thecis n−3 fatty acids were more easily desaturated and elongated to 22∶6n−3 than the correspondingtrans n−3 fatty acids. An increase in 22∶5n−6 was thus observed, as has previously been described in n−3 fatty acid deficiency. These results encourage further studies to determine whether or not incorporations of suchtrans isomers into tissues may have physiological implications. Presented in part at the 32nd International Conference on the Biochemistry of Lipids, 1991, Granada, Spain. Delta nomenclature (Δ) is used fortrans polyunsaturated fatty acids to specify the position and geometry of ethylenic bonds. Polyunsaturated fatty acids containingtrans double bonds are abbreviated giving the locations of thetrans double bonds only; e.g., 20∶5 Δ17t 20∶5 Δ5c,8c,11c,14c,17t; 22∶5 Δ19t, 22∶5 Δ7c,10c,13c,16c,19t; 22∶6 Δ19t 22∶6 Δ4c,7c,10c,13c,16c,19t.  相似文献   

6.
A. Q. Dang  K. Kemp  F. H. Faas  W. J. Carter 《Lipids》1989,24(10):882-889
We have studied the effect of various diets on the phospholipid fatty acid composition andin vitro Δ5 desaturase activity of hepatic microsomes derived either from the normal or streptozotocin-induced diabetic rat. The diets studied were the standard rat chow diet and a basal fat-free diet supplemented either with 20 percent saturated fat, 20 percent unsaturated fat, or 20 percent menhaden oil. Phospholipid fatty acid composition analysis revealed that the normal rat fed the saturated fat or menhaden oil diet had significantly decreased arachidonate levels, consistent with decreased Δ5 desaturase activities and decreased 18∶2n−6 intake. On the contrary, the unsaturated fat diet decreased dihomo-γ-linolenate and increased arachidonate levels, without increased Δ5 desaturase activity. Streptozotocininduced diabetes resulted in decreased arachidonate and Δ5 desaturase activity. The unsaturated fat diet fed to the diabetic rat also failed to correct this decreased Δ5 desaturase activity. The unsaturated fatty acids in this diet also displaced a substantial amount of n−3 fatty acids in both normal and diabetic microsomes, due to the competition between these two fatty acid families for incorporation into the membrane phospholipids. Conversely, the menhaden oil diet fed to the normal and diabetic rats displaced n−6 fatty acids, reduced Δ5 desaturase activity, and enhanced 22∶6n−3 incorporation into diabetic microsomes.  相似文献   

7.
C. H. Tsai  J. E. Kinsella 《Lipids》1982,17(12):848-852
Suspension cell cultures of cocoa bean rapidly incorporated palmitic, stearic, oleic and linoleic acids into cellular lipids. Thus, 75 and 20% of [1-14C] palmitic acid was incorporated into polar lipids and triglycerides, respectively, after 48 hr. When [1-14C] oleic and [1-14C] linoleic acid were added separately, polar lipids consistently contained most of the radioactive fatty acids. Ca. 60% of the stearic acid accumulated as unesterified fatty acid in the cells. Palmitic and stearic acid were not desaturated, but oleic acid and linoleic acid were further desaturated. The kinetics of conversion of oleic acid and linoleic acid suggested a sequential desaturation pathway of 18∶1→18∶2→18∶3 in cocoa bean cell suspensions.  相似文献   

8.
The effect of very low levels of dietary long-chain n−3 fatty acids on Δ6 desaturation of linoleic acid (18∶2n−6) and α-linolenic acid (18∶3n−3), and on Δ5 desaturation of dihomo-γ-linolenic acid (20∶3n−6), in liver microsomes and its influence on tissue fatty acids were examined in obese and lean Zucker rats and in Wistar rats. Animals fed for 12 wk a balanced diet containing ca. 200 mg of long-chain polyunsaturated n−3 fatty acids per 100 g of diet were compared to those fed the same amount of α-linoleic acid. Low amounts of long-chain n−3 fatty acids greatly inhibited Δ6 desaturation of 18∶2n−6 and Δ5 desaturation of 20∶3n−6, while Δ6 desaturation of 18∶3n−3 was not inhibited in Zucker rats and was even stimulated in Wistar rats. Inhibition of the biosynthesis of long-chain n−6 fatty acids was reflected in a decrease in arachidonic acid (20∶4n−6) content of serum lipids when fasting, and also in the phospholipid fatty acids of liver microsomes. On the contrary, heart and kidney phospholipids did not develop any decrease in 20∶4n−6 during fish oil ingestion. Docosahexaenoic acid (22∶6n−3), present in the dietary fish oil, was increased in serum lipids and in liver microsome, heart, and kidney phospholipids.  相似文献   

9.
The seed lipids from five sunflower mutants, two with high palmitic acid contents, one of them in high oleic background, and three with high stearic acid contents, have been characterized. All lipid classes of these mutant seeds have increased saturated fatty acid content although triacylglycerols had the highest levels. The increase in saturated fatty acids was mainly at the expense of oleic acid while linoleic acid levels remained unchanged. No difference between mutants and standard sunflower lines used as controls was found in minor fatty acids: linolenic, arachidic, and behenic. In the high-palmitic mutants palmitoleic acid (16∶1n−7) and some palmitolinoleic acid (16∶2n−7, 16∶2n−4) also appeared. Phosphatidylinositol, the lipid with the highest palmitic acid content in controls, also had the highest content of palmitic or stearic acids, depending on the mutant type, suggesting that saturated fatty acids are needed for its physiological function. Positional analysis showed that mutant oils have very low content of saturated fatty acids in the sn-2 position of triacylglycerols, between the content of olive oil and cocoa butter.  相似文献   

10.
The effects of hypothyroidism and of daily treatment for up to 21 days with thyroxin (T4, 0.5 μg/100 g body weight) on the fatty acid composition of total lipid, phosphatidylethanolamine, and phosphatidylcholine of rat liver mitochondria were studied. The fatty acid compositions of hypothyroid and euthyroid (control) rats of similar age were compared. The n−6 and n−3 polyunsaturated fatty acids (PUFA) were affected differently by the hypothyroid state. The levels of linoleic (18∶2n−6), γ-linolenic (18∶3n−6) and dihomo-γ-linolenic acids (20∶3n−6) were higher in hypothyroid rats than in controls, while the level of arachidonic acid (20∶4n−6) was lower, which suggests an impairment of the elongase and desaturase activities. The n−3 polyunsaturated fatty acids, eicosapentaenoic (EPA, 20∶5n−3) and docosapentaenoic (22∶5n−3) acids, were higher in hypothyroid rats, whereas the linolenic acid (18∶3n−3) content remained constant. The level of docosahexaenoic acid (DHA, 22∶6n−3) was dramatically decreased in hypothyroid rats, while the levels of C22 n−6 fatty acids were unchanged. The differences were probably due to the competition between n−3 and n−6 PUFA for desaturases, elongases and acyltransferases. When hypothyroid rats were treated with thyroxin, the changes induced by hypothyroidism in the proportions of n−6 fatty acids were rapidly reversed, while the changes in the n−3 fatty acids were only partially reversed. After 21 days of thyroxin treatments, the DHA content was only half as high in hypothyroid rats than in euthyroid rats. These results suggest that the conversion of 18∶2n−6 to 20∶4n−6 is suppressed in the hypothyroid state which favors the transformation of 18∶3n−3 to 20∶5n−3. The marked decrease in DHA content indicates an impairment of the enzymes involved in the DHA metabolism, possibly the n−3 Δ4 desaturase or the acyltransferases. The increased levels of EPA and 22∶5n−3 is consistent with the inhibition of the n−3 pathway at the Δ4 desaturase step. Observed modifications in the fatty acid composition may significantly alter eicosanoid synthesis and membrane functions in hypothyroidism.  相似文献   

11.
The influence of individual conjugated linoleic acid (CLA) isomers on the Δ6 desaturation of linoleic and α-linolenic acids and on the Δ9 desaturation of stearic acid was investigated in vitro, using rat liver microsomes. The Δ6 desaturation of 18∶2n−6 was decreased from 23 to 38% when the ratio of 9cis,11trans-18∶2 to 18∶2n−6 increased from 0.5 to 2. The compound 10trans,12cis-18∶2 exhibited a similar effect only at the highest concentration. The Δ6 desaturation of α-linolenic acid was slightly affected by the presence of CLA isomers. The sole isomer to induce an inhibitory effect on the Δ9 desaturation of stearic acid was 10trans,12cis-18∶2.  相似文献   

12.
The fresh-water green alga Parietochloris incisa is the richest plant source of the PUFA arachidonic acid (20∶4n−6, AA). To elucidate the biosynthesis of AA in this alga we labeled cultures of P. incisa with radioactive precursors. Pulse chase labeling with acetate resulted in its incorporation via the de novo biosynthesis pathway of FA. However, labeled acetate was also utilized for the elongation of C16 and C18 PUFA. Labeling with [1-14C]oleic acid has shown that the first steps of the lipid-linked FA desaturations utilize cytoplasmic lipids. PC and diacylglyceryltrimethylhomoserine are the major lipids involved as acyl carriers for the Δ12 and Δ6 desaturations of oleic acid, leading sequentially to linoleic and γ-linolenic acids. The latter is released from its lipid carrier and elongated to 20∶3n−6, which is reincorporated primarily into PF and PC and finally desaturated to AA. Galactolipids, mostly monogalctosyldiacylglycerol (MGDG), serve as substrates for the chloroplastic Δ12 desaturase and, apparently, the ω3 desaturation, common to higher plants and many green algae. The predominant sequence desaturates the 18∶1/16∶0 molecular species of MGDG stepwise to the 18∶3n−3/16∶3n−3 molecular species similar to the prokaryotic pathway of higher plants and green algae.  相似文献   

13.
This study was undertaken to investigate the total plasma fatty acid composition and the relationship between plasma triacylglycerol (TG) levels and liver Δ9 desaturase activity in mice fed n−3 and/or n−6 fatty acid or hydrogenated coconut oil (HCO) (maximum 25 mg/g) supplemented diets. Generally, plasma TG levels and Δ9 desaturase activity were inversely correlated with the ratio of the sum of long chain n−3 fatty acids to 18∶2n−6 and to the ratio of the sum of long chain n−3 fatty acids to 18∶n−3, but they were positively correlated with the ratio of products and substrates (18∶1/18∶0) of the enzyme in plasma total lipids. The n−3 fatty acid (mainly 20∶5n−3) enriched diet, when compared to the HCO diet at 21 d, caused a significant reduction in plasma TG levels but not in Δ9 desaturase activity. However, a marked reduction in plasma TG content (50–60%) and Δ9 desaturase activity (55–70%) was observed when both 20∶5n−3 and 18∶3n−6 were supplemented in the diet. The plasma TG levels and Δ9 desaturase activity rose again when the animals were fed the HCO diet or chow. The results suggest that low dose supplementation of a mixture of n−3 (mainly 20∶5n−3) and n−6 (18∶3n−6) fatty acids modified both plasma TG content and liver Δ9 desaturase activity, in parallel.  相似文献   

14.
Marine fish have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18–20 elongase activity. Recent research in turbot cells found low C18–20 elongase but high Δ5 desaturase activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabeled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18∶2n−6 and [1-14C]18∶3n−3), C18–20 elongase ([U-14C]18∶4n−3), Δ5 desaturase ([1-14C]20∶3n−6 and [1-14C]20∶5n−3), and C20–22 elongase ([1-14C]20∶4n−6 and [1-14C]20∶5n−3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and that C18–20 elongase and C20–22 elongase activities were substantial. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase, which was very low, particularly with 20∶4n−3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18–20 elongase, and C20–22 elongase were approximately 94-, 27-, and 16-fold greater than that for Δ5 desaturase toward their respective n−3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity.  相似文献   

15.
Thein vivo effect of testosterone administration to male or female rats on the biosynthesis of unsaturated fatty acids of liver was studied. Twenty-four hours after injection of testosterone (260 μg/kg), δ9 desaturase activity increased significantly, whereas the activities of δ5 and δ6 desaturases were strongly depressed. These effects were more pronounced in female than in male animals. The fatty acid composition of plasma and liver (homogenates, crude microsomes and cytosol) showed differences between the sexes. In males, the percentage of palmitic acid and the 18∶1/18∶0 ratio were higher whereas the 20∶4(n−6)/18∶2(n−6) ratio was lower than in female rats. The administration of testosterone significantly modified the fatty acid pattern in all fractions studied. Analytical data correlated with alterations in the fatty acid desaturase activities caused by the hormone. It is suggested that the mechanism by which testosterone exerts its effect on unsaturated fatty acid biosynthesis is different than that previously demonstrated by glucocorticoid action. The effects produced by testosterone may be of biological significance in atherosclerosis pathogenesis.  相似文献   

16.
The fatty acid composition of individual phospholipids in subcellular fractions of sheep platelets and the asymmetrical distribution of phosphatidylethanolamine (PE) fatty acyl chains across the plasma membrane were examined. The main fatty acids of total lipid extracts were oleic (18∶1; 32–41%), linoleic (18∶2, 10–17%), stearic (18∶0; 13–15%), palmitic (16∶0; 11–15%) and arachidonic (20∶4; 8–12%) acids, with a saturated/unsaturated ratio of about 0.4. Each phospholipid class had a distinct fatty acid pattern. Sphingomyelin (SM) showed the highest degree of saturation (50%), with large proportions of behenic (22∶0), 18∶0 and 16∶0 acids. The main fatty acid in PE, phosphatidylserine (PS) and phosphatidylcholine (PC) was 18∶1n−9. Our findings suggest that fatty acids are asymmetrically distributed between thecholineversus the non-choline phospholipids, and also between plasma membranes and intracellular membranes. The transbilayer distribution of PE fatty acids in plasma membranes from non-stimulated sheep platelets was investigated using trinitrobenzenesulfonic acid (TNBS). A significant degree of asymmetry was found, which is a new observation in a non-polar cell. The PE molecules from the inner monolayer contained higher amounts of 18∶2 and significantly less 18∶1 and 20∶5 than those found in the outer monolayer, although no major differences were detected in the transbilayer distribution of total unsaturatedversus saturated PE acyl chains.  相似文献   

17.
Octadecapentaenoic acid (all-cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U-14C] 18∶5n−3 methyl ester or [U-14C]18∶4n−3 (octadecatetraenoic acid; all-cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3 , and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all-cis δ6,9,12,15–18∶5 (2-trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all-cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all-cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all-cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2-trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2-trans 18∶5n−3 intermediate generated by a Δ3, Δ2-enoyl-CoA-iso-merase acting on 18∶5n−3. Thus, 2-trans 18∶5n−3 is implicated as a common intermediate in the β-oxidation of both 18∶5n−3 and 18∶4n−3.  相似文献   

18.
A method combining data on fatty acid composition into subsets is used to illustrate general relative competitive selectivities in the metabolic and transport events that maintain fatty acid compositions in tissue lipids and to minimize differences among tissues or species in the amount of individual fatty acids. Fatty acid compositions of triglycerides and phospholipids in several tissues of the rat were maintained with simple relationships between the exogenous n−3 and n−6 dietary polyunsaturated fatty acids and the endogenous n−7 and n−9 types of fatty acid. The general pattern of fatty acids in triglycerides was similar for liver, plasma and adipose tissue, averaging about 30% as saturated acids, 67% as 16- and 18-carbon unsaturated acids and only about 2% as 20- and 22-carbon highly unsaturated acids. The tissues maintained a linear relationship between the amount of 18-carbon polyunsaturated fatty acids in the diet and in the tissue triglycerides, with the proportionality constant for 18∶3n−3 being 60% of that for 18∶2n−6. The total phospholipids of liver, plasma and red blood cells maintained about 45% of the fatty acids in the form of saturated fatty acids and 20–30% as 20- and 22-carbon highly unsaturated fatty acids irrespective of very different proportions of n−3, n−6 and n−9 types of fatty acids. In all three tissues, the 20-carbon highly unsaturated fatty acids of the n−3, n−6 and n−9 type were maintained in a competitive hyperbolic relationship with apparent EC50 values for dietary 18∶2n−6 and 18∶3n−3 near 0.1% of dietary calories. The consistent quantitative relationships described in this study illustrate an underlying principle of competition among fatty acids for a limited number of esterification sites. This approach may be useful in predicting the influence of diet upon tissue levels of the substrates and antagonists of eicosanoid biosynthesis.  相似文献   

19.
The effects of perfused oleic (18∶1n−9), arachidonic (20∶4n−6) and 5,8,11,14-nonadecatetraenoic (19∶4n−5) acids on triglyceride and cholesterol secretion and ketone body production were studied in isolated rat liver. As compared to oleic and 19∶4n−5 acids, both ketone body production and triglyceride secretion were significantly lowered when arachidonic acid was perfused. The concentration of triglyceride in the post-perfused liver was lower upon perfusion with arachidonic acid than upon perfusion with oleic acid or 19∶4n−5 acid. Cholesterol secretion in the liver perfused with arachidonic acid or 19∶4n−5 acid was significantly higher than with oleic acid. The concentration of cholesterol in the post-perfused liver was slightly but significantly higher with 19∶4n−5 acid than with the other fatty acids. The results suggest that 19∶4n−5 acid when compared with arachidonic acid affects lipid metabolism in liver differently.  相似文献   

20.
The incorporation and metabolism of α-linolenic acid (18∶3n−3) and its Δ6 desaturase product, stearidonic acid (18∶4n−3), were compared by NIH-3T3 cells. In the presence of fetal calf serum, cells accumulated exogenously added 18∶3n−3 and 18∶4n−3 apparently at the expense of oleic acid (18∶1n−9). Both 18∶3n−3 and 18∶4n−3 were elongated and desaturated to eicosatetraenoic acid (20∶4n−3), eicosapentaenoic acid (20∶5n−3) and docosapentaenoic acid (22∶5n−3), but not to docosahexaenoic acid (22∶6n−3), and were incorporated into phospholipids and triacylglycerols. Over a 4−d period, the growth of NIH-3T3 cells was slightly stimulated in the presence of 18∶3n−3 (20 μg/mL) but was strongly inhibited in the presence of 18∶4n−3 at the same concentration. This inhibition may be caused by enhanced lipid peroxidation as a result of the high levels of 18∶4n−3 present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号