首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
元素粉末Ti与Al反应机理的研究进展   总被引:3,自引:0,他引:3  
开展元素粉末Ti和Al反应机理的研究有助于优化反应工艺.介绍了元素粉末Ti和Al反应机理的不同观点,并分别从动力学和热力学角度进一步分析了Ti和Al元素粉末的反应机理.动力学认为,元素粉末Ti和Al的反应是一个由扩散控制,包括TiAl3及TiAl2中间相生成的过程.热力学认为,TiAl3相的形成自由能最低,为Ti-Al系反应的首要产物,近而生成TiAl相,随后发生一系列与过渡相有关的反应.  相似文献   

2.
采用两步钎焊方法来完成梯度材料的制备:第一步,选用Ti-Zr-Cu-Ni-Co急冷态箔带钎料钎焊TC4/TiAl接头,钎焊规范选为960℃/10min;第二步,采用高纯度的Al,Cu和Si粉末混合配制Al-25Cu-5Si钎料,用于钎焊TiAl/LF21接头,钎焊规范选为590℃/10min.结果表明,两步钎焊法成功实...  相似文献   

3.
Ti/Al2O3复合材料性能研究   总被引:5,自引:0,他引:5  
本文利用放电等离子烧结技术制备了致密的Ti/Al2O3复合材料.实验结果表明,60vol%Al2O3和80vol%Al2O3的Ti/Al2O3复合材料,界面处生成少量的TiAl,使得Ti与Al2O3间的界面能大于其单个晶粒的界面能,复合材料性能随Ti含量的增加而增大;40vol%Al2O3和20vol%Al2O3的Ti/Al2O3复合材料,界面处生成脆性的Ti3Al相,使得Ti与Al2O3间的界面能小于各自晶粒的界面能,材料的性能随Ti含量的增加而降低,同时断裂的模式也发生改变,由穿晶断裂为主转变为沿晶断裂,脆性的Ti3Al相是Ti/Al2O3复合材料力学性能降低的主要原因.  相似文献   

4.
The(TiB/Ti)-TiAl composites with a laminated structure composing of alternating TiB/Ti composite layers,α2-Ti3Al interfacial reaction layers of andγ-TiAl layers were successfully pre pared by spark plasma sintering of alternately stacked Tib2/Ti powder layers and TiAl powder layers.And the influence of thickness ratio of Tib2/Ti powder layers to TiAl powder layers on microstructure evolution and mechanical properties of the re sulting(TiB/Ti)-TiAl laminated composites were investigated systemically.The results showed that the thickening ofα2-Ti3Al layers which originated from the reaction of Ti and TiAl was significantly hindered by introducing Tib2particles into starting Ti powders.As the thickness ratio of Tib2/Ti powder layers to TiAl powder layers increased,the bending fracture strength and fracture toughness at room temperature of the final(TiB/Ti)-TiAl laminated composites were remarkably improved,especially for the(TiB/Ti)-TiAl composites prepared by Tib2/Ti powder layers with thickness of 800μm and TiAl powder layers with thickness of 400μm,whose fracture toughness and bending strength were up to 51.2 MPa·m1/2and 1456 MPa,respectively,293%and 108%higher than that of the monolithic TiAl alloys in the present work.This was attributed to the addition of high-performance network TiB/Ti composite layers.Moreover,it was noteworthy that the ultimate tensile strength at 700℃of(TiB/Ti)-TiAl composites fabricated by 400μm thick Tib2/Ti powder layers and 400μm thick TiAl powder layers was as high as that at 550℃of network TiB/Ti composites.This means the service temperature of(TiB/Ti)-TiAl laminated composites was likely raised by 150℃,meanwhile a good combination of high strength and high toughness at ambient tempe rature could be maintained.Finally,the fracture mechanism of(TiB/Ti)-TiAl laminated composites was proposed.  相似文献   

5.
为了制备高密度的TiA l基合金,研究了高能球磨Ti/A l复合粉体的烧结性能.冷压坯在660℃以下真空反应烧结,采用排水法测定了烧结坯体积和密度变化,利用X射线衍射、扫描电子显微镜研究了坯料烧结过程中的相变和显微组织特征.结果表明,坯料在低温烧结过程中产生明显的体积膨胀和开裂.原因主要是低密度过渡金属间化合物TiA l3的形成,烧结过程中A l向Ti扩散留下的孔隙,高能球磨和压坯过程中产生的塑性变形以及Ti、A l反应烧结过程中的自蔓燃现象.适当延长球磨时间和严格控制烧结温度将有助于减少膨胀,避免开裂.  相似文献   

6.
王志伟  施雨湘 《功能材料》2005,36(11):1794-1797
(Ti-50%(原子分数)AD-10%Al2O3粉体经过球磨的机械活化(MA)后,用放电等离子烧结(SPS)工艺,在烧结的同时进行固化。采用机械活化-放电等离子烧结(MA—SPS)的方法原位烧结制备TiAl—Al2O3块体纳米材料。球磨前后,(Ti-50%(原子分数)AD-10%Al2O3粉体的衍射图(XRD)相似。MA后得到晶粒度〈25nm的纳米粉体,其中Al2O3起到机械活化和细化晶粒的作用,促使粉体快速纳米化。纳米粉体在温度低于800℃、烧结时间〈5min的烧结参数下,烧结成TiAl纳米合金。TiAl纳米合金的微观结构表明,合金有γ-TiAl和α2—Ti3Al双相组织。SPS原位烧结后,得到密度为3.73g/cm^3的(γ+α2)双相组织,组成相的晶粒度〈130nm。  相似文献   

7.
In this work, Ti/Al–Cr–Fe metal matrix composites were fabricated with Ti as matrix and Al–Cr–Fe quasicrystal approximants as reinforcements using spark plasma sintering. In all samples a Ti3Al ring forms around each Al–Cr–Fe particle as a bonding layer between Ti and Al–Cr–Fe particles. In the sample sintered with a holding time of 5 min, there are only TiAl regions present at the Ti3Al/Al–Cr–Fe interface. However, in the samples sintered with a holding time of 10, 15 or 20 min, TiAl, Ti(Al,Cr)2 and L12 regions were detected at the Ti3Al/Al–Cr–Fe interface. The addition of Al–Cr–Fe particles into the Ti matrix was found to improve the mircrohardness to 460 HV and increase the wear resistance by more than 50%.  相似文献   

8.
Al-Ti-TiO2体系自蔓延高温合成及机理   总被引:1,自引:0,他引:1  
采用自蔓延高温合成技术制备了TiAl/Al2O3复合材料,研究了原料配比对合成过程及产物特征的影响,结果表明,随着Al2O3含量的增加,燃烧温度和燃烧速度均增大,材料的致密度得到改善。Al2O3颗粒尺寸小于1μm,分布于基体交界处,有一定程度的团聚。通过差热分析研究了Al-Ti-TiO2体系反应过程,发现Al-TiO2还原较晚开始,但由于激活能低而速度较快,因此较早完成,TiAl3最早生成,但只作为中间产物存在,随后向TiAl和TiAl3相转变的过程为控制环节,其激活能也体现为总反应的激活能。  相似文献   

9.
元素粉末冶金因具有成本低、制备的合金组织均匀细小等优点而受到广泛关注。简要介绍了元素粉末法制备TiAl合金的研究进展,主要从反应机理、致密化行为和力学性能等方面进行综述。研究表明,Ti与Al元素的反应由扩散控制,借助TiAl3和TiAl2等中间相最终得到Ti3Al和TiAl相共存的反应产物。在高Nb–TiAl合金的Ti–Al–Nb三元系中,Nb元素主要通过形成中间产物——Nb–Al化合物最终均匀分布在基体相中。从原料和工艺两个角度总结了元素粉末法制备TiAl合金过程中影响致密化的因素,介绍了提高元素粉末法制备TiAl合金的热加工和力学性能的方法,总结了近年来元素粉末法制备TiAl合金的力学性能研究成果。目前来看,元素粉末法制备的TiAl合金力学性能已达到变形合金的水平。  相似文献   

10.
The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.  相似文献   

11.
The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.  相似文献   

12.
Based on two sets of TiAl powder, two kinds of porous TiAl were separately fabricated by powder metallurgical route including four stages. The porous TiAl with single pore structure (SPS) was prepared using pre-alloyed TiAl powder prior mechanical ball milling. Another porous TiAl with composite pore structure (CPS) was manufactured depending on composite mixture of Ti/Al elemental powders. The sintering was achieved at much lower temperature for the pre-alloyed power than for the elemental composite mixture. Compressive mechanical tests indicate that much higher mechanical strength can be obtained for SPS than for CPS at the same porosity. It was suggested that the difference of mechanical properties is ascribed to the variety of the compressive deformation process.  相似文献   

13.
Components of Ti and Al dissimilar alloys were obtained by wire and arc additive manufacturing using two cold metal transfer (CMT) modes.Direct current CMT (DC-CMT) mode was used for Ti alloy deposition,and DC-CMT or CMT plus pulse (CMT + P) mode was used for the Al alloy deposition.During deposition of the first Al alloy layer,little and a significant amount of Ti alloy were melted using DC-CMT and CMT +P mode,respectively.TiAl3 formed in the reaction layer when DC-CMT mode was used,while TiAl3,TiAl,and Ti3Al formed in the reaction layer when CMT + P mode was used.Compared to using DC-CMT mode,more cracks occurred when using CMT + P.The nanohardness of the reaction layer was between that of the Al and Ti alloys,irrespective of the CMT modes.The average tensile strengths of the samples us ingDC-CMT and CMT + P mode were 108 MPa and 24 MPa,respectively.DC-CMT mode was more suitable for the wire and arc additive manufacturing of Ti/Al dissimilar alloys.  相似文献   

14.
Fully dense and single-phase Ti2AlC ceramic was successfully synthesized by a high energy milling and hot pressing using Ti, C and Al as starting materials. The effects of composition of the initial elemental powders and sintering temperatures on the purity and formation of Ti2AlC were examined. The formation mechanism for the single-phase Ti2AlC ceramics was investigated by XRD in details, which could be described as follows: the most of initial elements reacted to form TiC and Ti–Al intermetallics; the intermetallics and the residual Ti and Al transformed to TiAl phase; and finally the TiAl intermetallics and the TiC reacted to yield Ti2AlC.  相似文献   

15.
This paper describes a new process for producing titanium aluminides, in particular TiAl, from TiO2 raw material. On the basis of obtained results, the non-completed reaction of TiO2 with Al and Ca in a special reaction vessel results in the production of granulates of titanium aluminides especially Ti3Al and other Ti- Al phases as the metallic product and Ca12Al14O33 as the non-metallic product. By adding KClO4 in the mixture, a nearly completed reaction can be carried out. The products of this reaction are titanium aluminide particularly TiAl as the metallic part and CaAl4O7 (grossite) as the non-metallic slag part. Both product and slag are produced in a separated form. This process, called KRH-method is described in this article. The scanning electron microscopic microstructure of metallic part of the product shows different phases: the matrix phase is TiAI, where the needle form precipitation is TiAl2 and the plate form precipitation includes TiAI and Ti3Al phases. The microstructure of the remelted metallic part indicates dendritic phase with a lamellar structure comprising of TiAl and Ti3Al phases. The interdendritic phase of TiAI is also seen.  相似文献   

16.
This study is concerned with the fabrication of multilayered and bulk Ti aluminide sheets by self-propagating high-temperature synthesis (SHS) reaction using hot rolling and heat treatment. A multilayered Ti/Al sheet was prepared by stacking thin Ti and Al sheets alternatively. When this sheet was hot-rolled and heat-treated at 1000°C, a multilayered sheet composed of Ti3Al and TiAl was made through the process of formation and growth of intermetallic phases at Ti/Al interfaces and porosity reduction. A bulk Ti aluminide sheet having a lamellar structure of TiAl and Ti3Al was also fabricated successfully by heat treatment at 1400°C.  相似文献   

17.
以Ti、Al和B4C为原料,采用真空电弧熔炼的方法制备了含Ti_2AlC-TiB_2增强相的TiAl基复合材料;分析了添加不同含量的Ti_2AlC-TiB_2对复合材料的物相组成、组织结构及力学性能的影响,并探讨了微观组织结构的形成机制。结果表明:Ti_2AlC-TiB_2/TiAl复合材料主要由TiAl、Ti3Al、TiB_2和Ti_2AlC等物相组成,TiB_2和Ti_2AlC分布在层片状的TiAl+Ti3Al基体中;随着原料中B4C含量的增多,复合材料组织中Ti_2AlC-TiB_2含量增多,且TiAl基体的晶粒被明显细化,TiB_2和Ti_2AlC分布于基体晶界或晶内。Ti_2AlC主要为层片状和板条状,尺寸5~15μm,而TiB_2颗粒形态与其含量有关,当Ti_2AlC-TiB_2含量小于20wt%时,TiB_2颗粒呈针棒状,尺寸为0.5~5μm,当Ti_2AlC-TiB_2含量增加到30wt%时,TiB_2颗粒主要呈块状,尺寸为5~20μm。Ti_2AlC由TiC与Ti-Al熔体发生包晶反应生成,Ti_2AlC和TiB_2的形成提高了Ti_2AlC-TiB_2/TiAl复合材料的硬度、塑性和抗压强度。当4Ti+Al+B4C的加入量为10wt%时,复合材料的变形量比纯TiAl提高14%,而抗压强度达到最高值1 591 MPa。Ti_2AlC和TiB_2通过裂纹偏转、颗粒钉扎、拔出等机制对Ti_2AlC-TiB_2/TiAl复合材料起到增强增塑的作用。  相似文献   

18.
目的 添加0.05 mm厚的Ni箔作为中间层,对3 mm厚的TC4钛合金和2A14铝合金进行搅拌摩擦焊,分析Ni对接头力学性能的影响。方法 采用扫描电镜、EDS能谱及XRD衍射等微观表征分析方法,对焊接接头的断口形貌、成分进行分析,探究Ni箔对焊接接头力学性能的影响。结果 由于钛合金和铝合金存在较大的物理化学性能差异,Ti/Al异种金属焊接性较差,界面容易产生TiAl3、TiAl、Ti3Al等金属间化合物,其中脆性相TiAl3对接头性能的影响最大,会导致综合力学性能下降。当加入中间层材料Ni后,由于Ni与Al晶体结构均属于面心立方,因此Ni与Al的扩散系数大于Ti与Al的扩散系数,Ni和Al之间优先形成金属间化合物且弥散分布于焊缝中,从而缩短了Ti与Al之间的相互扩散时间,减少了TiAl3相的生成。结论 在未添加中间层材料时,接头平均抗拉强度为237.3 MPa,约为2A14铝合金母材抗拉强度的56.7%;当添加中间层Ni后,对焊缝中金属间化合物的种类和数量进行了调控,减少了对性能影响最大的TiAl3相的生成,接头平均抗拉强度达到285.3 MPa,为2A14铝合金母材抗拉强度的68%。  相似文献   

19.
Ti-Al intermetallics have been produced using mechanical alloying technique. A composition of Ti-48Al-2Nb at % powders was mechanically alloyed for various durations of 20, 40, 60, 80 and 100 h. At the early stages of milling, a Ti (Al) solid solution is formed, on further milling the formation of amorphous phase occurs. Traces of TiAl and Ti3Al were formed with major Ti and Al phases after milling at 40 h and beyond. When further milled, phases of intermetallic compounds like TiAl and Ti3Al were formed after 80 hours of milling and they also found in 100 h milled powders. The powders milled for different durations were sintered at 785°C in vacuum. The mechanically alloyed powders as well as the sintered compacts were characterized by XRD, FESEM and DTA to determine the phases, crystallite size, microstructures and the influence of sintering over mechanical alloying.  相似文献   

20.
Titanium aluminide alloys were prepared from cold-extruded elemental Ti and Al powders with compositions ranging from 25 to 75 at % Al. The production route in this study includes four essential steps: mixing, precompaction, cold-extrusion and reaction treatment. During reaction treatment, the intermetallic phases Ti3Al, TiAl and TiAl3 are formed by interdiffusion of Ti and Al, and pore formation takes place because of the different diffusivities of Ti and Al. The processes of phase formation, as well as pore formation, were studied by means of calorimetric, dilatometric and metallographic methods. In order to obtain nearly fully dense specimens, the technique of hot isostatic pressing was applied. The sintering behaviour and microstructures of the prepared alloys are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号