首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

3.
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.  相似文献   

4.
The activity of the major intracellular protein phosphatase, protein phosphatase 2A (PP2A), is determined by the nature of the associated regulatory subunit. A new family of human PP2A regulatory subunits has recently been identified. Three of these subunits, B56beta, B56delta, and B56epsilon, are most highly expressed in brain, while the B56alpha and B56gamma isoforms are highly expressed in cardiac and skeletal muscle. Genes PPP2R5A-PPP2R5E encoding the phosphatase regulatory proteins B56alpha, B56beta, B56gamma, B56delta, and B56epsilon have now been mapped by fluorescence in situ hybridization to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12, respectively.  相似文献   

5.
6.
Ser --> Cys mutations were introduced into subunit delta of spinach chloroplast F0F1-ATPase (CF0CF1) by site-directed mutagenesis. The engineered delta subunits were overexpressed in Escherichia coli, purified, and reassembled with spinach chloroplast F1-ATPase (CF1) lacking the delta subunit (CF1(-delta)). By modification with eosin-5-maleimide, it was shown that residues 10, 57, 82, 160, and 166 were solvent-accessible in isolated CF1 and all but residue 166 also in membrane-bound CF0CF1. Modification of the engineered delta subunit with photolabile cross-linkers, binding of delta to CF1(-delta), and photolysis yielded the same SDS gel pattern of cross-link products in the presence or absence of ADP, phosphate, and ATP and both in soluble CF1 and in CF0CF1. By chemical hydrolysis of cross-linked CF1, it was shown that deltaS10C was cross-linked within the N-terminal 62 residues of subunit beta. deltaS57C, deltaS82C, and deltaS166C were cross-linked within the N-terminal 192 residues of subunit alpha. Cross-linking affected neither ATP hydrolysis by soluble CF1 nor its ability to reassemble with CF0 and to structurally reconstitute ATP synthesis. Functional reconstitution, however, seemed to be impaired.  相似文献   

7.
Biphenyl (BPH) dioxygenase oxidizes BPH to 2,3-dihydro-2,3-dihydroxybiphenyl in Comamonas testosteroni B-356. The enzyme comprises a two-subunit iron-sulfur protein (ISPBPH), a ferredoxin FERBPH, and a ferredoxin reductase REDBPH. REDBPH and FERBPH transfer electrons from NADH to an Fe-S active center of ISPBPH which activates molecular oxygen for insertion into the substrate. In this work B-356 ISPBPH complex and its alpha and beta subunits were purified from recombinant Escherichia coli strains using the His-bind QIAGEN system. His-tagged B-356 ISPBPH construction carrying a single His tail on the N-terminal portion of the alpha subunit was active. Its major features were compared to the untagged enzyme. In both cases, the native form is an alpha3beta3 heteromer, with each alphabeta unit containing a [2Fe-2S] Rieske center (epsilon455 = 8,300 M-1 cm-1) and a mononuclear Fe2+. Although purified His-tagged alpha subunit showed the characteristic absorption spectra of Rieske-type protein, reassociation of this enzyme component and His-tagged beta subunit to reconstitute active ISPBPH was weak. However, when His-tagged alpha and beta subunits were reassembled in vitro in crude cell extracts from E. coli recombinants, active ISPBPH could be purified on Ni-nitrilotriacetic acid resin.  相似文献   

8.
cDNA sequences encompassing the full coding region for the human muscle acetylcholine receptor (AChR) epsilon and gamma subunits have been isolated. The deduced amino-acid sequences indicate that the mature epsilon subunit contains 473 amino acids and is preceded by a 20-amino-acid signal peptide. As predicted from genomic clones, the gamma subunit contains 495 amino acids preceded by a 22-amino-acid signal peptide. In common with the human alpha, beta, gamma and delta subunits the epsilon subunit is highly conserved between mammalian species. The epsilon subunit gene is not closely linked to the gamma and delta subunits on chromosome 2 but rather is located with the beta subunit on chromosome 17. Expression of the alpha-, beta-, gamma-, delta- and epsilon-subunit cRNAs in rabbit-reticulocyte lysates followed by analysis on SDS/PAGE show glycosylated proteins with apparent molecular masses of 44-60 kDa.  相似文献   

9.
Voltage-gated calcium channels are composed of a main pore-forming alpha1 moiety, and one or more auxiliary subunits (beta, alpha2 delta) that modulate channel properties. Because modulatory properties may vary greatly with different channels, expression systems, and protocols, it is advantageous to study subunit regulation with a uniform experimental strategy. Here, in HEK 293 cells, we examine the expression and activation gating of alpha1E calcium channels in combination with a beta (beta1-beta4) and/or the alpha2 delta subunit, exploiting both ionic- and gating-current measurements. Furthermore, to explore whether more than one auxiliary subunit can concomitantly specify gating properties, we investigate the effects of cotransfecting alpha2delta with beta subunits, of transfecting two different beta subunits simultaneously, and of COOH-terminal truncation of alpha1E to remove a second beta binding site. The main results are as follows. (a) The alpha2delta and beta subunits modulate alpha1E in fundamentally different ways. The sole effect of alpha2 delta is to increase current density by elevating channel density. By contrast, though beta subunits also increase functional channel number, they also enhance maximum open probability (Gmax/Qmax) and hyperpolarize the voltage dependence of ionic-current activation and gating-charge movement, all without discernible effect on activation kinetics. Different beta isoforms produce nearly indistinguishable effects on activation. However, beta subunits produced clear, isoform-specific effects on inactivation properties. (b) All the beta subunit effects can be explained by a gating model in which subunits act only on weakly voltage-dependent steps near the open state. (c) We find no clear evidence for simultaneous modulation by two different beta subunits. (d) The modulatory features found here for alpha1E do not generalize uniformly to other alpha1 channel types, as alpha1C activation gating shows marked beta isoform dependence that is absent for alpha1E. Together, these results help to establish a more comprehensive picture of auxiliary-subunit regulation of alpha1E calcium channels.  相似文献   

10.
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating.  相似文献   

11.
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.  相似文献   

12.
Photoaffinity labeling by 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) of the adenine nucleotide binding site(s) on isolated and complexed alpha and beta subunits of F1-ATPase from the thermophilic bacterium PS3 (TF1) is described. BzATP binds to both isolated alpha and beta subunits, to complexed beta subunit but not to complexed alpha subunit. Amino acid sequence determination of radiolabeled peptides obtained by proteolytic digestion of [gamma-32P]BzATP-labeled alpha subunit indicates that residues on both the amino-terminal (residues A41-E67) and carboxy-terminal (residues Q422-Q476) were modified by BzATP. One of the residues in the carboxy-terminal modified by BzATP is most probably alpha Q422. Although the binding stoichiometry of 1 mol of BzATP incorporated by either isolated or complexed beta subunit was maintained, the spatial conformation of the polypeptide determines which amino acid residue(s) is more accessible to the reactive radical. CNBr derived fragments beta G10-M64, beta E75-M233, and beta D390-M469 were labeled with the isolated beta subunit. With complexed beta subunit the label was found only in CNBr fragments: beta E75-M233 and beta G339-M389. The locations where the covalently bound BzATP was found, in the soluble and assembled subunits, indicate that different conformational states exist. In the isolated form of the alpha and beta subunits the amino- and carboxy-termini can fold and reach the central domain of the polypeptide, the domain containing the adenine nucleotide binding site. When alpha combines with beta to form the alpha 3 beta 3 core complex the new conformation of the subunits is such that covalent labeling by BzATP of alpha and of the amino terminal of beta subunit is excluded.  相似文献   

13.
14.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

15.
GABA(A) receptor (GABAR) isoforms in the central nervous system are composed of combinations of alpha(1-6), beta(1-4), gamma(1-4), delta(1) and epsilon(1) subunit subtypes arranged in a pentamer. Many regions of the brain express high levels of mRNA encoding several different subunits and even multiple subunit subtypes. The stoichiometry of GABAR isoforms is unclear, and the number and identity of individual subunit subtypes that are coassembled remain uncertain. To examine the role of beta subunit subtypes in the functional properties of GABARS and to determine whether multiple beta subtypes can be coassembled in functional GABARs, plasmids containing cDNAs encoding rat beta1 and/or beta3, alpha5 and gamma2L subtypes were cotransfected into L929 fibroblasts. The properties of the expressed receptor populations were determined using whole-cell and single-channel recording techniques. The alpha5beta1gamma2L isoform was less sensitive to GABA than the alpha5beta3gamma2L isoform. alpha5beta1gamma2L isoform currents were also insensitive to the allosteric modulator loreclezole, while alpha5beta3gamma2L isoform currents were strongly potentiated by loreclezole. Fibroblasts transfected with plasmids containing cDNAs for both beta1 and beta3 subtypes along with alpha5 and gamma2L subtypes produced a receptor population with an intermediate sensitivity to GABA which was insensitive to loreclezole. These results suggest that functional GABARs can be formed that contain two different beta1 subunit subtypes with properties different from receptors that contain only a single beta1 subtype and that the beta1 subunit subtypes influence the response of GABARs to GABA and to the allosteric modulator loreclezole.  相似文献   

16.
17.
Nicotinic acetylcholine receptors (AChRs) are activated by ACh binding to two sites located on different alpha subunits. The two alpha subunits, alpha gamma and alpha delta, are distinguished by their interface with gamma and delta subunits. We have characterized the formation of the ACh binding sites and found, contrary to the current model, that the sites form at different times and in a set order. The first site forms on alpha gamma subunits during the process of subunit assembly. Our data are consistent with the appearance of this site on alpha beta gamma delta subunit tetramers soon after the site for the competitive antagonist alpha-bungarotoxin has formed and delta subunits have assembled with alpha beta gamma trimers. The second site is located on alpha delta subunits and forms after AChR subunits have assembled into alpha2 beta gamma delta pentamers. By determining the order in which the ACh binding sites form, we have also identified the sites in which the delta and second alpha subunits associate during subunit assembly.  相似文献   

18.
We have studied the change of the catalytic activity of chimeric complexes that were formed by chloroplast coupling factor 1 (CF1) -gamma, alpha and beta subunits of thermophilic bacterial F1 after formation or reduction of the disulfide bridge of different gamma subunits modified by oligonucleotide-directed mutagenesis techniques. For this purpose, three mutant gamma subunits were produced: gamma Delta194-230, here 37 amino acids from Pro-194 to Ile-230 are deleted, gammaC199A, Cys-199 is changed to Ala, and gamma Delta200-204, amino acids from Asp-200 to Lys-204 are deleted. All of the chimeric subunit complexes produced from each of these mutant CF1-gamma subunits and alpha and beta subunits from thermophilic bacterial F1 lost the sensitivity against thiol reagents when compared with the complex containing wild-type CF1-gamma. The pH optimum (pH 8.5-9.0) and the concentration of methanol to stimulate ATPase activities were not affected by these mutations. These indicate that the introduction of the mutations did not change the main features of ATPase activity of the chimeric complex. However, the interaction between gamma subunit and epsilon subunit was strongly influenced by the type of gamma subunit itself. Although the ATPase activity of the chimeric complex that contained gamma Delta200-204 or gammaC199A was inhibited by the addition of recombinant epsilon subunit from CF1 similarly to complexes containing the reduced wild-type gamma subunit, the recombinant epsilon subunit did not inhibit the ATPase of the complex, which contained the oxidized form of gamma subunit. Therefore the affinity of the epsilon subunit to the gamma subunit may be dependent on the state of the gamma subunit or the epsilon subunit may bind to the oxidized form of gamma subunit in a mode that does not inhibit the activity. The ATPase activity of the complex that contains gamma Delta194-230 was not efficiently inhibited by epsilon subunit. These results show that the formation or reduction of the disulfide bond on the gamma subunit may induce a conformational change in the region that directly affects the interaction of this subunit with the adjacent epsilon subunit.  相似文献   

19.
The eukaryotic protein synthesis initiation factor, eIF-2B, is a multimeric protein of five different subunits termed alpha, beta, gamma, delta and epsilon, which facilitates recycling of a further factor, eIF-2, and is an important control point in the initiation process. In order to investigate the structure and function of eIF-2B, monoclonal antibodies have been prepared to the beta, delta and epsilon subunits of the factor from rabbit reticulocytes. All three antibodies are active in Western blotting, ELISA and immunoprecipitation. The anti-epsilon antibody inhibits both the guanine nucleotide exchange activity of eIF-2B and protein synthesis in the rabbit reticulocyte lysate at the level of initiation. The other two antibodies do not inhibit either guanine nucleotide exchange or protein synthesis. The monoclonal antibodies and a polyclonal anti-(rabbit reticulocyte eIF-2B) serum were used to investigate the subunit size and the antigenic structure of eIF-2B from a variety of rabbit tissues and from a variety of mammalian species. eIF-2B from all rabbit tissues tested was indistinguishable from that prepared from rabbit reticulocytes. Quantitative studies showed substantial variation in the relative concentrations of eIF-2 and eIF-2B between different rabbit tissues. Marked variation in both the sizes of the subunits and their reaction with the antibodies was observed between eIF-2B from rabbit, rat, guinea pig and man.  相似文献   

20.
Cardiac inotropic effects of beta adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (alpha 1, beta and alpha 2-delta), biochemical studies have revealed that two subunits, alpha 1 and beta, are phosphorylated in vitro by protein kinase A, the alpha 1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C alpha 1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits beta and alpha 2-delta. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the beta subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the alpha 1 and the beta subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号