首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用有限元法分析了压力容器筒体与封头连接区的应力分布规律以及封头局部屈曲失稳。结果表明,在相同内压下,壁厚较大时压力容器的临界屈曲载荷较大,即结构较稳定不易出现局部屈曲;随着施加内压的增大,封头与筒体连接区的应力分布规律不变,而应力最大值与最小值之差增大,即封头与筒体连接区更易发生局部屈曲。  相似文献   

2.
基于ANSYS的高压容器筒体与封头的连接区的应力分析   总被引:1,自引:0,他引:1  
由于高压容器筒体与封头的连接区的不连续,往往导致不连续区局部应力集中,而且结构较为复杂,很难用解析法进行精确求解。采用有限元分析软件ANSYS对高压容器筒体与封头的连接区进行了应力分析,从而为压力容器不连续区应力分析提供了一种合理的方法和依据。  相似文献   

3.
由于高压容器筒体与封头的连接区的不连续,往往导致不连续区局部应力集中,而且结构较为复杂,很难用解析法进行精确求解。采用有限元分析软件ANSYS对高压容器筒体与封头的连接区进行了应力分析,从而为压力容器不连续区应力分析提供了一种合理的方法和依据。  相似文献   

4.
当筒体和封头连接在一起时,会引起不连续效应,从而引起局部应力突升,应力集中系数增大的现象。借助ANSYS软件对椭圆形封头、球形封头、平板封头和筒体连接结极迚行了数值模拟研究,考察其内部应力云图分布规律,并通过改变封头厚度、筒体厚度、压力三个因素,引入三因素三水平正交实验,考查这三种因素对应力集中系数的影响程度,所得结论对压力容器的实际运行有一定的指导意义。  相似文献   

5.
高压容器筒体与封头连接区是高压容器的高应力区之一,对其进行了三维有限元分析,获得了连接区的应力分布信息.结果表明:高压容器筒体与封头连接区最大应力强度出现在过渡区与球壳连接处.  相似文献   

6.
建立了整体多层包扎式高压容器多层筒体与球形封头连接区有限元接触分析模型,得到了端部阶梯式连接结构的应力分布状况,并与相同尺寸非多层结构的应力分布进行了比较。结果表明,两种结构内外壁应力变化趋势相似,在连接区出现明显的应力集中,连接处轴向应力上升趋势大于周向应力,达到最大应力值后迅速衰减。  相似文献   

7.
压力容器在我国化工、纺织、石油冶炼等传统行业中是必不可少的关键装备。在实际生产过程中,高温高压是工艺生产过程中会遇到的工况,会在压力容器筒体和封头连接处产生较大的应力集中,会影响压力容器正常工作。本文借助于计算机有限元ANSYS15.0软件,对压力容器在高温高压条件下,筒体与封头连接处进行应力分析模拟,为压力容器设计提供一定的参考价值。  相似文献   

8.
王战辉  马向荣  党睿  高浩  宋俊汶 《化工机械》2020,47(3):332-337+362
利用ANSYS 16.0有限元分析软件,以半球形封头、椭圆形封头和无折边球形封头3种凸形封头为研究对象,通过改变削边长度和削边形式,得到其应力分布规律,并进行优化分析。结果表明:3种封头形式压力容器最大等效应力均集中于筒体和封头过渡区域;在相同尺寸和相同削边形式下,应力集中系数大小顺序为无折边球形封头>椭圆形封头>半球形封头;随着削边长度L的增加,椭圆形封头和无折边球形封头压力容器应力集中系数K均呈增大的趋势,对于半球形封头压力容器,削边长度L出现临界值;半球形封头压力容器优化效果最为明显。  相似文献   

9.
本文借助ANSYS Workbench软件,进行了封头型式对压力容器应力影响的数值模拟,通过改变封头型式,得到不同型式封头对压力容器应力影响的规律。结果表明:施加相同内压时,椭圆形封头应力集中区在以封头中心的0.8D范围以外和封头与圆筒连接处之间的区域;蝶形封头应力集中程度相对较小,应力分布相对比较均匀;球形封头对压力容器所受的应力影响最小。  相似文献   

10.
欧金藩 《化工设计通讯》2023,(11):87-88+104
对压力容器中开孔接管靠近筒体与封头连接处的结构模型,采用有限元应力分析法分析筒体与封头连接处边缘应力和接管与筒体相贯区局部高应力叠加影响规律,通过建立不同的模型(开孔率不同,开孔和筒体与封头连接处距离不同)进行对比。结果表明,两种应力会相互影响,且开孔率越大,相互影响越大。当开孔率达到0.52时,接管与筒体相贯区的一次局部薄膜应力受筒体与封头连接处边缘应力的影响会增大10.27%,封头过渡区的一次局部薄膜应力受接管与筒体相贯区高应力的影响会增大18.8%。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

17.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

18.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号