首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preliminary investigation of both as-deposited and annealed titanium (75 nm), palladium (75 nm), gold (400 nm), ohmic contacts to thinp +-GaAs layers, was carried out using a combination of transmission electron microscopy, energy dispersive x-ray analysis, secondary ion mass spectroscopy and electrical measurements. The annealed contacts showed limited interaction between the metallization and the semiconductor with a metal penetration depth of only 2 nm for a 4 minute anneal at 380° C. The contacts were found to remain layered after annealing. The layers consisted of a uniform upper layer of large a Au(Ga) grains, a central, non-uniform layer containing small Pd-rich grains and a lower uniform layer of almost pure Ti. Preliminary SIMS studies suggested Zn dopant outdiffusion from the epilayer into the metal layer and this may have important implications for the electrical properties of these contacts.  相似文献   

2.
The relationship between the electrical properties and microstructure for annealed Au/Ge/Ni contacts to n-type InP, with an initial doping level of 1017 cm-3, have been studied. Metal layers were deposited by electron beam evaporation in the following sequence: 25 nm Ni, 50 nm Ge, and 40 nm Au. Annealing was done in a nitrogen atmosphere at 250-400‡C. The onset of ohmic behavior at 325‡C corresponded to the decomposition of a ternary Ni-In-P phase at the InP surface and the subsequent formation of Ni2P plus Au10In3, producing a lower barrier height at the InP interface. This reaction was driven by the inward diffusion of Au and outward diffusion of In. Further annealing, up to 400‡C, resulted in a decrease in contact resistance, which corresponded to the formation of NiP and Au9ln4 from Ni2P and Au10In3,respectively, with some Ge doping of InP also likely. A minimum contact resistance of 10-7 Ω-cm2 was achieved with a 10 s anneal at 400‡C.  相似文献   

3.
Improved performance of the ohmic contacts on n-GaN has been demonstrated with the use of MoAu as the capping layer on TiAl metallization. Contact resistance as low as 0.13 Θ-mm was achieved in these ohmic contacts when annealed at 850°C for 30 sec. We have studied the long-term thermal stability of these contacts at 500°C, 600°C, 750°C, and 850°C, respectively. The Ti/Al/Mo/Au metallization forms low contact-resistance ohmic contacts on n-GaN that are stable at 500°C and 600°C after 25 h of thermal treatment. The ohmic-contact performance degrades after 10 h of thermal treatment at 750°C, while the contacts exhibit nonlinear current-voltage (I-V) characteristics after 1 h of thermal treatment at 850°C with the formation of oxide on the surface of the contacts accompanied by surface discoloration. The intermetallic reactions taking place in the contacts during the long-term thermal treatments were studied using Auger electron spectroscopy (AES), and the surface morphology was characterized using atomic force microscopy (AFM).  相似文献   

4.
用磁控溅射系统和快速合金化法制备了Mo/W/Ti/Au多层金属和n-GaAs材料的欧姆接触,在溅射金属层之前分别用HCl溶液和(NH4)2S溶液对n-GaAs材料的表面进行处理.用传输线法对比接触电阻进行了测试,并利用俄歇电子能谱(AES)、X射线衍射图谱(XRD)对接触的微观结构进行了分析.结果表明,用(NH4)2S溶液对n-GaAs材料表面进行处理后,比接触电阻最小;在700℃快速合金化后获得最低的比接触电阻,约为4.5×10-6Ω·cm2.这是由于(NH4)2S溶液钝化处理后降低了GaAs的表面态密度,消除了费米能级钉扎效应,从而改善了难熔金属与GaAs的接触特性.  相似文献   

5.
A low resistance PdGe nonalloyed ohmic contact has been successfully formed to epitaxially lifted-off n-type GaAs films. The contact is made by lifting off partially metallized n-type GaAs films using the epitaxial lift-off method and bonding them to metallized Si substrates by natural intermolecular Van Der Waals forces. Low temperature sintering (200°C) of this contact results in metallurgical bonding and formation of the ohmic contact. We have measured specific contact resistances of 5 × 10−5 Ω-cm2 which is almost half the value obtained for pure Pd contacts. Germanium forms a degenerately doped heterojunction interfacial layer to GaAs. Our experimental results show that germanium diffuses to the interface and acts as a dopant layer to n-GaAs film surface. Therefore, for epitaxially lifted-off n-type GaAs films, PdGe is a low resistance ohmic metal contact to use.  相似文献   

6.
The multi-layer metals of Ni/Au Ge/Pt/Au with a Pt diffusion barrier layer of ohmic contact to n-GaAs were studied. The surface morphology and ohmic contact resistivity of multi-layer metals were characterized, with and without the Pt diffusion barrier layer for comparison. The SEM and EDS measurements show the Pt diffusion barrier layer can block the interdiffusion of atoms in multi-layer metals, and improve the surface morphology.The TLM results show that the samples with a Pt diffusion barrier layer have uniform ohmic contact resistance,indicating that the Pt diffusion barrier layer can increase the repetition and uniformity of ohmic contact to n-GaAs,and improve the thermal stability and reliability of GaAs-based devices.  相似文献   

7.
The interfacial microstructural analysis of the Ge/Pd(Zn) ohmic contact to p-InP, based on the solid-phase regrowth principle, is reported. Typical contact resistivities of low 10−4 to low 10−5 Ω-cm2 can be obtained for this contact scheme annealed at temperatures higher than 400°C. Cross-sectional transmission electron microscopy, energy dispersive x-ray composition mapping, and con-verge beam electron diffraction were utilized in this study for the interfacial microstructure analysis. The solid-phase regrowth process has been confirmed in this contact system on InP. Precipitates of trapped materials during solid phase regrowth have also been observed. The correlation between the electrical and microstructural properties is addressed.  相似文献   

8.
The ohmic contact formation mechanism and the role of Pt layer of Au(500Å) Pt(500Å)/Pd(100Å) ohmic contact to p-ZnTe were investigated. The specific contact resistance of Au/Pt/Pd contact depended strongly on the annealing temperature. As the annealing temperature increased, the specific contact resistance decreased and reached a minimum value of 6×10?6 Θcm2 at 200°C. From the Hall measurement, the hole concentration increased with the annealing temperature and reached a maximum value of 2.3×1019 cm?3 at 300°C. The Schottky barrier height decreased with the increase of annealing temperature and reached a minimum value of 0.34 eV at 200°C and it was due to the interfacial reaction of Pd and ZnTe. Therefore, the decrease of contact resistance was due to the increase of doping concentration as well as the decrease of Schottky barrier height by the interfacial reaction of Pd ZnTe. The specific contact resistances of Au Pd, Au/Pt/Pd and Au/Mo/Pd as a function of annealing time was investigated to clarify the role of Pt layer.  相似文献   

9.
Gold-based ohmic contacts, incorporating Pt, Pd, and Zn layers, to AIGaAs/GaAs heterojunction bipolar transistors (HBTs) have been characterized using transmission electron microscopy (TEM). The metallization was deposited onto a 30 nm graded emitter layer of n-type AlxGa1−xAs, which was on a 30 nm emitter layer of n-type Al0.3Ga0.7As, with the aim of contacting the underlying 80 nm thick graded base layer of p-type AlxGa1−xAs. Metal layers were deposited sequentially using electron beam evaporation and the resultant metallizations were annealed at temperatures ranging from 250-500°C for up to several minutes. A minimum contact resistance of ≈8.5 × 10−7 Ω-cm2 was achieved, which corresponded to the decomposition of ternary phases at the metallization/semiconductor interface, to binary phases, i.e., PdGa and PtAs2. Long term stability tests were done on the optimum contacts. Anneals at 270°C for up to four weeks in duration produced virtually no change in microstructure, with the exception of some outward diffusion of Ga and As.  相似文献   

10.
The Ti/Al/Ni/Au metals were deposited on undoped AlN films by electron beam evaporation. The influence of annealing temperature on the properties of contacts was investigated. When the annealing temperatures were between 800 and 950℃, the AlN-Ti/Al/Ni/Au contacts became ohmic contacts and the resistance decreased with the increase of annealing temperature. A lowest specific contacts resistance of 0.379 Ω·cm2 was obtained for the sample annealed at 950℃. In this work, we confirmed that the formation mechanism of ohmic contacts on AlN was due to the formation of Al-Au, Au-Ti and Al-Ni alloys, and reduction of the specific contacts resistance could originate from the formation of Au2Ti and AlAu2 alloys. This result provided a possibility for the preparation of AlN-based high-frequency, high-power devices and deep ultraviolet devices.  相似文献   

11.
Many optoelectronic devices require contacts top-doped epitaxial layers. To achieve low contact resistance, the semiconductor has to be doped to high levels. Thep-dopants most commonly used are Be, Mg, and Zn. The contacts were formed by the sequential e-beam evaporation of 10 nm Pd, ≤5 nm Zn, 20 nm Pd and 40 nm Au layers onto a 0.2 μm thick Be-doped (5 × 1018 cm) GaAs layer grown by MBE. The minimum contact resistance of 0.04Ω-mm (≤1 × 10−7 Ω-cm2), as measured using the transmission line method, was obtained for contacts annealed at 500° C for 30s. These are the lowest contact resistance values reported to date for alloyed contacts top-GaAs.  相似文献   

12.
基于圆形传输线模型,通过测试样品的比接 触电阻率和电流-电压(I-V)特性曲线,分析 对比了Al与Si基上外延生长的p型Ge、n型Ge和n型Si的接触特性。实验结果发现,由于金 属与Ge材料接触存在强烈的费米钉效应,导致金属与n型Ge接触有高的接触电阻,难实 现低的比接触电阻率;而Al与p型Ge在掺杂浓度为4.2×1018 cm-3时,并且经过退火,比接 触电阻率能达到4.0×10-7 Ω·cm2;Al与n型Ge和n型Si接 触电极相比,后者可形成良好的 欧姆接触,其比接触电阻率较n型Ge接触降低了1个量级,经合金化处理后的Al/n+Si接触 电阻率能达到5.21×10-5 Ω·cm2,达到了制作高性能Ge 光电器件的要求。  相似文献   

13.
Refractory NiGe ohmic contacts which have excellent thermal stability and smooth surface have been developed. To apply these contacts to the future very large scale integration GaAs devices, reduction of the contact resistance (Rc) of the NiGe contacts is mandatory. In the present paper, in order to obtain a guideline for the Rc reduction, the formation mechanism of the NiGe contacts was investigated. The NiGe contacts were found to have two different ohmic contact formation mechanisms. These mechanisms suggested that facilitation of heavy doping at the GaAs surface and/or in the Ge layer was very effective to reduce the Rc values of the NiGe contacts. Experimentally, the Rc reduction was demonstrated by adding a small amount of third elements. Direct doping elements (Sn, Sb, and Te) and indirect doping elements (Pd, Pt, Au, Ag, and Cu) were chosen as the third elements. In additon, the effect of addition of In, which forms alow barrier layer between metal and GaAs, was investigated. The contact resistance of these NiGe-based contacts were close to 0.3 Ω mm, and they provided smooth surface and shallow reaction depth. Finally, the NiGe-based contacts were compared with the conventional AuGeNi contact.  相似文献   

14.
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400℃. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400℃. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500℃. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700℃ before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500℃, which exceeds process temperatures of most typical MEMS packaging technologies.  相似文献   

15.
The electrical properties of the ohmic contact systems Au/Pt/Ti/WSiN and Au/Pt/Ti to n+-InGaAs/GaAs layers grown by metalorganic vapor phase epitaxy were investigated and compared to each other. The thermal stability properties of these contact systems were characterized by accelerated stress tests at elevated temperatures and by complementary thin film x-ray diffraction analysis to evaluate the microstructural properties of degraded and nondegraded structures. The goal of these efforts was to develop stable, homogeneous emitter contacts for power heterojunction bipolar transistors. It was found that for both contact systems the best (specific) contact resistance Rc (ρ c) is about 0.05 Ωmm (2 × 10−7 Ωcm2) in the as-deposited state. Au/Pt/Ti/WSiN contacts show no degradation after aging at 400°C for more than 20 h. This is in contrast to standard Au/Pt/Ti contacts which significantly degrade even after short time annealing at 400°C. The good long-time stability of the Au/Pt/Ti/WSiN system is related to the advantageous properties of the reactively sputtered WSiN barrier layer.  相似文献   

16.
NiInGe ohmic contact materials, which are attractive to use in future GaAs devices, were previously developed in our laboratories. Although the NiInGe contacts provided low contact resistances of about 0.3 Ω-mm and excellent thermal stability, further reduction of the contact resistance (RC) of the NiInGe contacts was mandatory to use these contacts in submicron devices. In this paper, the microstructural parameters, which influence the RC values, were investigated by correlating the RC values with the microstructure at the interface between the contact materials and the GaAs substrate. The RC values of the NiInGe contacts were found to depend strongly on the volume fraction and the In concentration (x) of the InxGa1−xAs compound semiconductor layers, which were formed at the metal/GaAs interface. Both the volume fraction and the In concentration of the InxGa1−xAs layers were found to depend on the thickness of the In layer used in the NiInGe contact and the annealing temperature to form the ohmic contact. A RC value of 0.18 Ω-mm was obtained for the Ni (18 nm)/In (13 nm)/Ge (30 nm) contact (where a slash “/” indicates the deposition sequence) after annealing at temperature of 650°C for 5 sec.  相似文献   

17.
Low temperature, non-alloyed Au-Ge contact formation ton-GaAs is a multi-step pro-cess. During the first 5 min of annealing at 320° C the Au and Ge segregate into regions a few microns in size and extend over the entire thickness of the metal layer and sig-nificant in-diffusion of the Au and Ge and out-diffusion of the Ga and As occurs. This intermixing reduces the barrier height from 0.75 to 0.40 eV. The contact does not show ohmic behavior until it has been annealed for 3 hr. During this time Ge continues to in-diffuse but at a slower rate than it did initially. The rate of Ge in-diffusion is en-hanced by the presence of Au since samples containing less Au require longer anneals to show ohmic behavior and have higher specific contact resistances. The presence of excess As, which is prevented from evaporating by a Si3N4 cap has the opposite effect since capped layers have higher specific contact resistances. Au-Ge phases appear after approximately 3 hr of annealing, therefore, Au-Ge phases cannot be responsible for the reduction in barrier height. The interface morphology is smooth, differing from that of pure Au and alloyed contacts that often contain spiking of the metals into the semi-conductor. The orientation relationship for the Au grains differs from that of pure Au. Work performedat U.S. Army ETDL, Fort Monmouth, NJ 07703. Work performed at U.S.Army ETDL, Fort Monmouth, NJ 07703.  相似文献   

18.
Fabrication procedures for silicon carbide power metal oxide semiconductor field effect transistors (MOSFETs) can be improved through simultaneous formation (i.e., same contact materials and one step annealing) of ohmic contacts on both the p-well and n-source regions. We have succeeded with the simultaneous formation of the ohmic contacts for p- and n-type SiC semiconductors by examining ternary Ni/Ti/Al materials with various compositions, where a slash symbol “/” indicates the deposition sequence starting with Ni. The Ni(20 nm)/Ti(50 nm)/Al(50 nm) combination provided specific contact resistances of 2 × 10−3 Ω-cm2 and 2 × 10−4 Ω-cm2 for p- and n-type SiC, respectively, after annealing at 800°C for 30 min, where the doping level of Al in the SiC substrate was 4.5 × 1018 cm−3 and the level of N was 1.0 × 1019 cm−3.  相似文献   

19.
Pd-Ge based ohmic contact to n-GaAs with a TiW diffusion barrier was investigated. Electrical analysis as well as Auger electron spectroscopy and the scanning electron microscopy were used to study the contact after it was subjected to different furnace and rapid thermal annealing and different aging steps. All analyses show that TiW can act as a good barrier metal for the Au/Ge/Pd/n-GaAs contact system. A value of 1.45 × 10−6 Ω-cm2 for the specific contact resistance was obtained for the Au/TiW/Ge/Pd/n-GaAs contact after it was rapid thermally annealed at 425°C for 90 s. It can withstand a thermal aging at 350°C for 40 h with its ρc increasing to 2.94 × 10−6Ω-cm2 and for an aging at 410°C for 40 h with its ρc increasing to 1.38 × 10−5 Ω-cm2.  相似文献   

20.
The performance of a novel Ge/Cu/Ti metallization scheme on n-type GaN has been investigated for obtaining thermally and electrically stable low-resistance ohmic contacts. Isochronal (2 min.) anneals in the 600–740°C temperature range and isothermal (690°C) anneals for 2–10 min. duration were performed in inert atmosphere. For the 690°C isothermal schedule, ohmic behavior was observed after annealing for 3 min. or longer with a lowest contact resistivity of 9.1 × 10−5 Ωcm2 after the 10 min. anneal for a net donor doping concentration of 9.2 × 1017 cm−Ω3. Mean roughness (Ra) for anneals at 690°C was almost constant at around 5 nm, up to an annealing duration of 10 min., which indicates a good thermal stability of the contact scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号