首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
An enhanced cascading failure model integrating data mining technique is proposed in this paper. In order to better simulate the process of cascading failure propagation and further analyze the relationship between failure chains, in view of a basic framework of cascading failure described in this paper, some significant improvements in emerging prevention and control measures, the subsequent failure search strategy as well as the statistical analysis for the failure chains are made elaborately. Especially, a sequential pattern mining model is employed to find out the association pertinent to the obtained failure chains. In addition, a cluster analysis model is applied to evaluate the relationship between the intermediate data and the consequence of obtained failure chain, which can provide the prediction in potential propagation path of cascading failure to reduce the risk of catastrophic events. Finally, the case studies are conducted on the IEEE 10-machine-39-bus test system as benchmark to demonstrate the validity and effectiveness of the proposed enhanced cascading failure model. Some preliminary concluding remarks and comments are drawn.  相似文献   

2.
Under frequency load shedding is an effective approach to maintain or restore the steady-state operation of the power system when frequency accidents occur. An improved under frequency load shedding strategy based on dynamic power flow tracking is proposed. The expression of the kinetic energy theorem in power system is derived and combined with the power flow tracing method to analyze the relation between system energy distribution and its frequency. The power system frequency influencing factors are then constructed and applied to find the reasons of frequency decline and to quantify the contributions of the mechanical power of the generators, the load power and the transmission losses for the frequency deviation. Finally, considering a variety of unbalanced power scenarios in the system, the modified load shedding strategy is designed. Based on the results of dynamic power flow tracing, the strategy can choose the suitable load node to control, and the defined load frequency contribution indicator is utilized to determine the load shedding amount which each control object undertakes. The proposed methodology is verified by the fault scenarios when the generator sets mistakenly cut off and the trip of important tie-lines in the IEEE 39-bus system. Compared with the conventional strategies, the proposed strategy is more selective, can reduce the blackout range, and improve the effect of stable frequency recovery  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号