首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
某含泥高硫混合铜矿选矿试验研究   总被引:1,自引:0,他引:1  
张辉  刘全军  袁华玮  张一超 《矿冶》2016,25(2):28-30
该矿石含泥量较高,黄铜矿与黄铁矿致密共生,原矿铜品位为0.99%,硫品位为18.32%。试验采用原矿洗矿—铜硫混合浮选—混合精矿再磨分离的原则流程。磨矿至-0.074 mm粒级含量占56%进行铜硫混选,混合精矿再磨矿至-0.074 mm粒级含量占90%进行铜硫分离。通过考察药剂制度对浮选的影响采用硫化钠400 g/t,丁基黄药∶丁基铵黑药(4∶1)80 g/t,松醇油35 g/t,石灰为1500 g/t,获得品位为15.95%、回收率为88.23%的铜精矿和品位为32.13%、回收率为69.84%的硫精矿。对同类别含泥高硫混合铜矿选矿具有一定指导意义。  相似文献   

2.
对西宁某原生铜矿石进行了选矿试验研究。通过对浮选指标各影响因素的优化,得出了适合铜矿石粗选的最佳工艺条件:磨矿细度70%-74μm的条件下,活化剂Na2S用量120 g/t,组合捕收剂异丙基黄药和丁基铵黑药分别为45、15 g/t,起泡剂11号油23 g/t。在此条件下进行两次扫选,混合精矿进行铜硫分离、再经过三次精选和两次扫选实验室闭路试验,可获得铜精矿品位为18.16%、回收率为86.21%,硫精矿品位为30.12%、回收率为82.07%的较好实验室闭路试验指标。  相似文献   

3.
某高铁铜矿选矿试验研究   总被引:2,自引:0,他引:2  
涂玉国  汤优优  雷霆  张汉平 《矿冶》2011,20(3):42-46
针对某高铁铜矿考察了原矿性质,并根据原矿性质特点进行选矿试验研究,分别进行了优先浮选和混合浮选两种方案的试验,优先浮选试验得到铜精矿品位为22.21%,回收率为95.47%。混合浮选中考察了浮选和磁选两种铜硫分离方法,得到铜精矿品位分别为23.56%和22.87%,回收率分别为97.62%和97.34%。对试验的各个方案进行了比较说明,确定了混合浮选—铜硫磁选分离的最佳试验方案。  相似文献   

4.
西藏某高泥硫化铜矿石含铜1.30%~1.60%,铜矿物主要以次生硫化铜矿(辉铜矿、蓝辉铜矿)形式赋存于矿石中,且矿石中含泥量高,铜矿物嵌布粒度较细、嵌布关系复杂,给铜矿物的选矿回收造成了极大的难度。针对该矿石性质,在磨矿细度-0.074 mm含量占75%情况下,采用次生硫化铜矿物高效捕收剂XP-03作铜矿物捕收剂、石灰作矿浆pH调整剂及硫铁矿抑制剂、2#油为起泡剂,经三次粗选获得的粗精矿合并后经一次精选,获得了合格的铜精矿,精选中矿顺序返回至粗选Ⅰ。实验室小型闭路试验结果表明,在原矿含铜1.45%的情况下,采用"铜三段粗选直接抛尾-铜粗精矿精选"工艺可获得铜精矿含铜18.61%,铜回收率为82.52%的较好指标。该研究结果可为该高泥硫化铜矿的高效开发利用提供可靠的技术支撑。  相似文献   

5.
某复杂硫化铜矿铜硫分离试验研究   总被引:14,自引:0,他引:14  
某复杂硫化铜矿矿石性质复杂, 铜矿物种类繁杂, 矿物结构构造也复杂多样, 且含铜品位较低。在工艺矿物学研究的基础上, 使用适合该矿石性质、对各种铜矿物均具有较强选择性和捕收能力的高效捕收剂LP-01, 采用分步优先浮选和中矿再磨再选的浮选工艺, 实现了该复杂硫化铜矿铜硫的低碱高效分离, 经二粗、一精、中矿再磨精选流程获得了铜品位18.43%、回收率87.54%的铜精矿, 分离效果明显。  相似文献   

6.
西藏玉龙氧硫混合铜矿选矿试验研究   总被引:5,自引:1,他引:4  
针对玉龙氧硫混合铜矿黄铁矿含量高、氧化率较高、次生铜含量大、易泥化脉石含量高、矿石性质复杂等特点,开展了多种流程结构的选矿试验及生物浸出试验。通过试验结果对比,推荐采用部分铜硫混合浮选-铜硫分离浮选工艺,可得到铜精矿铜品位19.54%,铜回收率82.07%的较好技术指标。  相似文献   

7.
某高硫难选硫化铜矿,矿石中含铜1.39%,金0.85g/t,硫16.18%,在浮选时加入高效抑制剂YJ-4,采用BJ-9和丁铵黑药作为组合捕收剂,铜精矿品位和回收率均提高的情况下,铜精矿中金的品位提高2.3倍,回收率增加了34.61%。工业试验在不改变流程结构的前提下,采用新的药剂制度,调试流程精矿品位比现场流程的精矿品位高1.57%,回收率高4.54%,技术指标较好,对同类矿山具有一定的参考价值。  相似文献   

8.
以云南某地硫化铜矿为研究对象。对该矿进行矿石分析,该矿含铜0.68%,并且主要是以硫化物形式存在。采用1粗3精3扫的浮选流程,得到含铜20.52%,回收率90.83%的铜精矿。为下一步该矿的开发奠定了坚实的基础。  相似文献   

9.
根据矿石性质,新疆某硫化铜矿含有有价元素铜、硫,可通过浮选进行回收。为此,进行了铜硫混合—分离浮选流程试验,在磨矿细度-0.074 mm占60%,调整剂为水玻璃且用量为350 g/t,捕收剂为Z-200且分段用量为(35+25)g/t,石灰用量为2 000~3 000 g/t的条件下,经1粗2扫2次精选得铜硫精矿,再进行1粗1扫2次精选铜硫分离得到了铜品位为23.55%、回收率为93.76%的铜精矿和硫品位为38.84%、回收率为52.37%的硫精矿,试验技术指标理想。  相似文献   

10.
越南某铜矿石含铜0.85%、硫1.48%,铜氧化率为4.94%.针对该矿石的特点,采用铜硫混合浮选、混合精矿再磨分选的浮选工艺流程,获得了铜品位23.85%、铜回收率93.27%的铜精矿,为该铜矿山的开发利用提供了技术保障.  相似文献   

11.
张玲 《矿冶》2016,25(2):15-18
针对甘肃祁连山脉黑沟矿某蚀变千枚岩型硫化铜矿石,进行了合理的选别工艺和药剂制度研究。结果表明,采用酯105作捕收剂,石灰作抑制剂,水玻璃作分散剂,在-0.074 mm占80%的磨矿细度下,经一次粗选、三次精选和两次扫选闭路试验,取得了精矿铜品位23.36%、回收率93.22%的良好指标。该浮选流程药剂制度简单,易于工业应用。  相似文献   

12.
云南东川某铜矿,含Cu仅0.65%,其中次生硫化铜占有率达85.6%,铜氧化率9.6%;矿石中黄铁矿含量较高,铜硫分离难度较大,并含有较多的易泥化脉石矿物,属低品位难选硫化铜矿。针对该矿石的性质特点,对其进行了浮选回收研究,结果表明:以CaO作pH调整剂和铜硫分离时的抑制剂、Na2SiO3作分散剂和抑制剂,磨矿细度选择80%-74um较为合适,Na2S一物多用,用量600g/t时可达到较好的沉淀、分散与活化效果,捕收剂优选为PAC,其最佳用量为120g/t。在最佳条件下,采用“一粗-二精-二扫”的闭路流程,获得了较好的技术指标,最终精矿Cu品位和回收率分别达20.12%和90.39%。   相似文献   

13.
大洋海底埋藏的热液硫化物矿产资源非常丰富,是人类未来开发利用的潜在资源。本文在对西南印度洋某海域的热液硫化物进行矿石性质研究的基础上,开展了回收铜的可选性试验研究,初步确定了回收硫化铜的浮选工艺流程,实现了对样品中硫化铜矿物的合理回收,为海底热液硫化物矿产资源矿区的申请和圈定提供了依据。  相似文献   

14.
某复杂铜铅锌多金属硫化矿,以黄铜矿、方铅矿和铁闪锌矿为主要的铜矿物、铅矿物和锌矿物。为有效回收其中的铜、铅、锌金属及伴生的金、银,开展了矿石工艺矿物学研究和选矿试验研究。结果表明,采用“铜铅混浮再分离-锌浮选”的工艺流程,可获得铜品位为19.05%、铜回收率为74.99%的铜精矿;铅品位为69.03%、铅回收率为75.03%的铅精矿;锌品位为47.87%、锌回收率为72.94%的锌精矿。以及金、银总回收率分别为75.45%和76.86%的工艺指标。  相似文献   

15.
针对某铜铅锌硫矿实际生产中存在的问题:铜浮选作业中有13.35%的铜损失在铜尾矿中;硫精矿含锌1.10%,杂质锌含量超标;锌精矿产品质量不合格(锌品位为18.38%),对铜浮选作业进行了多流程方案对比开路试验以及主要工艺条件的调整与优化,可获得铜精矿铜品位15.11%,铜回收率92.30%指标,较现场铜回收率提高了5.65%。采用抑锌浮硫工艺流程,可将现场硫精矿中锌品位由1.16%降至0.41%。对现场锌精矿采用不再磨、再磨工艺均显著提高了锌品位(锌品位最高可达48.71%),同时对该流程下浮选尾矿可作为单独的硫精矿产品进行回收。  相似文献   

16.
谦比希铜矿以硫化铜矿为主,由于矿石性质发生改变,采用现有工艺的浮选指标受到负面影响。针对这一问题,以谦比希西矿体矿石为研究对象,采用一段粗选开路浮选流程浮选,对药剂制度进行优化,并通过闭路浮选试验对优化结果进行验证。结果表明,黄药类捕收剂对该矿石浮选效果最好,其中异丙基黄药选择性较强,而丁基黄药具有更好的捕收能力。在磨矿细度为-0.074mm占70%,氧化钙用量600g/t,丁基黄药40g/t,松醇油25g/t的最优药剂制度下,经一次粗选、三次精选、两次扫选的闭路浮选,所得最终精矿的铜品位27.51%、回收率90.65%,浮选指标良好。  相似文献   

17.
针对西藏某低品位铜矿石进行了浮选试验研究,采用铜硫混合浮选-混合精矿再磨-铜硫分离工艺流程,获得了铜精矿含铜23.39%、回收率82.17%,硫精矿含硫36.58%、回收率61.97%。  相似文献   

18.
西藏东部某铜矿原矿铜品位0.60%,钼品位0.026%,铜氧化率18.33%,钼氧化率11.54,属混合矿。本文通过使用新型高效捕收剂BKY ,采用先硫后氧工艺流程,取得较好的选矿工艺指标,小型闭路试验获得指标为:铜精矿1铜品位25.29%、铜回收率74.90%,钼品位1.21%、钼回收率82.13%;铜精矿2 铜品位6.20%、铜回收率7.37%;铜综合回收率84.85%。  相似文献   

19.
根据某复杂难选铜硫矿的矿石特征可知,该矿中氧化铜和可溶性铜盐含量较高,并经过测定浮选矿浆中含有大量的铜离子,致使铜硫分离更加困难。针对该矿石特点,确定的试验流程为优先浮选铜工艺,并通过条件试验确定了合理的工艺条件,有效的解决了该矿石浮选过程中大量铜离子致使铜硫难以分离的问题。在磨矿细度为-0.074 mm占75%条件下,采用石灰加硫化钠的组合抑制剂,经过优先浮铜,原浆选硫的铜硫分离浮选工艺流程,可以获得铜品位为16.21%,回收率84.21%的铜精矿,硫品位45.14%,回收率82.11%的硫精矿。  相似文献   

20.
云南某低品位硫氧混合铜矿铜含量为1.03%,是主要有价金属,其中硫化铜占有率为71.67%,氧化铜占有率为28.33%,二氧化硅和氧化钙含量分别为43.26%和12.66%,硅酸盐和碳酸盐是主要的脉石矿物。通过系统的试验研究,确定采用异步浮选—分段硫化工艺,先选硫化铜再选氧化铜,硫化铜浮选采用丁基黄药作为捕收剂,石灰作为精选抑制剂,氧化铜浮选采用丁基黄药+丁铵黑药作为捕收剂,硫化钠为硫化剂,CMC作为精选抑制剂。两段粗选作业均不加抑制剂保证铜回收率,精选作业加入抑制剂提高铜品位,最终可获得铜品位为18.95%,铜回收率为66.27%的硫化铜精矿和铜品位为20.11%,铜回收率为19.87%的氧化铜精矿,铜总回收率为86.14%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号