首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of both the bgaA gene, coding for a thermostable beta-galactosidase of Thermus sp. strain T2, and its flanking regions was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 645 amino acids (Mr, 73,595). Comparative analysis of the open reading frames located in the flanking regions of the bgaA gene revealed that they might encode proteins involved in the transport and hydrolysis of sugars. The observed homology between the deduced amino acid sequences of BgaA and the beta-galactosidase of Bacillus stearothermophilus allows us to classify the new enzyme within family 42 of glycosyl hydrolases. BgaA was overexpressed in its active form in Escherichia coli, but more interestingly, an active chimeric beta-galactosidase was constructed by fusing the BgaA protein to the choline-binding domain of the major pneumococcal autolysin. This chimera illustrates a novel approach for producing an active and thermostable hybrid enzyme that can be purified in a single step by affinity chromatography on DEAE-cellulose, retaining the catalytic properties of the native enzyme. The chimeric enzyme showed a specific activity of 191,000 U/mg at 70 degrees C and a Km value of 1.6 mM with o-nitrophenyl-beta-D-galactopyranoside as a substrate, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C.  相似文献   

2.
A thermostable glycerol kinase (FGK) was purified 34-fold to homogeneity from Flavobacterium meningosepticum. The molecular masses of the enzyme were 200 kDa by gel filtration and 50 kDa by SDS-PAGE. The Km for glycerol and ATP were 0.088 and 0.030 mM, respectively. The enzyme was stable at 65 degrees C for 10 min and at 37 degrees C for two weeks. The enzyme gene was cloned into Escherichia coli and its complete DNA was sequenced. The FGK gene consists of an open reading frame of 1494-bp encoding a protein of 498 amino acids. The deduced amino acid sequence of the gene had 40-60% similarity to those of glycerol kinases from other origins and the amino acid sequence of the putative active site residue reported for E. coli GK is identical to the corresponding sequence of FGK except for one amino acid residue.  相似文献   

3.
The aspartate aminotransferase gene (AspAT, EC 2.6.1.1) of an extremely thermophilic bacterium, Thermus thermophilus HB8, was cloned and sequenced, and its gene product was overproduced. The purified T. thermophilus AspAT was stable up to about 80 degrees C at neutral pH. T. thermophilus AspAT was strictly specific for acidic amino acid substrates, such as aspartate, glutamate, and the respective keto acids. The gene coding for T. thermophilus AspAT showed that it comprised 1,155 bp with a high G+C content (70 mol%), and encoded a 385-residue protein with a molecular weight of 42,050. The amino acid sequence of T. thermophilus AspAT deduced from its gene showed about 15, 46, and 29% homology with those from Escherichia coli, Bacillus sp. YM-2, and Sulfolobus solfataricus, respectively. When the amino acid sequence of T. thermophilus AspAT was compared with that of E. coli AspAT, the number of Cys was found to have decreased from 5 to 1, that of Asn from 23 to 9, that of Gln from 16 to 8, and that of Asp from 20 to 13, all of which are known to be relatively labile at high temperatures. Conversely, the number of Pro was increased from 15 to 25, Arg from 22 to 32, and Glu 27 to 37. As shown by the E. coli AspAT structure, there was a marked tendency for the extra prolyl residues to be located around the surface of the molecule. This was quite different from that in the case of RecA protein, which shows an increased number of prolyl residues in the interior of its molecule. Different strategies of different proteins as to prolyl contribution to thermostability have been suggested. Despite the high degree of conservation of active-site residues, Arg292 in E. coli AspAT, which interacts with the distal carboxylate of the substrate, was not found in T. thermophilus AspAT. Arg89 may complement the function of Arg292.  相似文献   

4.
We purified and characterized a thermophilic beta-galactosidase from Thermus sp. A4 isolated from the Atagawa hot spring (Shizuoka, Japan). The enzyme was monomeric, and its molecular mass was estimated to be 75 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme was extremely thermostable and retained its full activity after incubation at 70 degrees C for 20 h. The Km observed were 5.9 mM for ortho-nitrophenyl beta-D-galactopyranoside and 19 mM for lactose. We cloned and analyzed the complete sequence of the gene encoding this enzyme. It was found to consist of 645 amino acid residues. We propose that this enzyme and seven other unclassified beta-galactosidases are new members of family 42 of the glycosyl hydrolases.  相似文献   

5.
trans-2'-Carboxybenzalpyruvate hydratase-aldolase was purified from a phenanthrene-degrading bacterium, Nocardioides sp. strain KP7, and characterized. The purified enzyme was found to have molecular masses of 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography. Thus, the homotrimer of the 38-kDa subunit constituted an active enzyme. The Km and kcat values of this enzyme for trans-2'-carboxybenzalpyruvate were 50 microM and 13 s(-1), respectively. trans-2'-Carboxybenzalpyruvate was transformed to 2-carboxybenzaldehyde and pyruvate by the action of this enzyme. The structural gene for this enzyme was cloned and sequenced; the length of this gene was 996 bp. The deduced amino acid sequence of this enzyme exhibited homology to those of trans-2'-hydroxybenzalpyruvate hydratase-aldolases from Pseudomonas putida PpG7 and Pseudomonas sp. strain C18.  相似文献   

6.
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni, a bacterium that is able to grow on steroids as the sole carbon source, catalyzes the oxidoreduction at position 3 of a variety of C19-27 steroids and the carbonyl reduction of a variety of nonsteroidal aldehydes and ketones. The gene of this steroid-inducible 3alpha-HSD/CR was cloned by screening a C. testosteroni gene bank with a homologous DNA probe that was obtained by polymerase chain reaction with two degenerative primers based on the N-terminal sequence of the purified enzyme. The 3alpha-HSD/CR gene is 774 base pairs long, and the deduced amino acid sequence comprises 258 residues with a calculated molecular mass of 26.4 kDa. A homology search revealed that amino acid sequences highly conserved in the short-chain dehydrogenase/reductase (SDR) superfamily are present in 3alpha-HSD/CR. Two consensus sequences of the SDR superfamily were found, an N-terminal Gly-X-X-X-Gly-X-Gly cofactor-binding motif and a Tyr-X-X-X-Lys segment (residues 155-159 in the 3alpha-HSD/CR sequence) essential for catalytic activity of SDR proteins. 3alpha-HSD/CR was overexpressed and purified to homogeneity, and its activity was determined for steroid and nonsteroidal carbonyl substrates. These results suggest that inducible 3alpha-HSD/CR from C. testosteroni is a novel member of the SDR superfamily.  相似文献   

7.
A novel liquefying alpha-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein-1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55 degreesC. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1, 548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (alpha/beta)8 barrel motif in domain A.  相似文献   

8.
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.  相似文献   

9.
10.
In contrast to most Staphylococcus aureus isolates in which the gene for staphylococcal beta-lactamase (blaZ) is plasmid borne, isolates typeable by group II bacteriophages frequently carry blaZ on the chromosome. Furthermore, the chromosomal gene encodes the type B variant of staphylococcal beta-lactamase for which the nucleotide and deduced amino acid sequences have not yet been reported. To better understand beta-lactamase production among phage group II staphylococci and the nature of the type B beta-lactamase, we determined the type and amount of enzyme produced by 24 phage group II isolates. Of these isolates, 1 did not produce beta-lactamase, 8 produced the type B enzyme, and 15 produced the type C enzyme. In all eight type B beta-lactamase-producing isolates, blaZ was located on the chromosome. This was in contrast to the type C beta-lactamase-producing isolates, in which blaZ was located on a 21-kb plasmid. The nucleotide sequence corresponding to the leader peptide and the N-terminal 85% of the mature exoenzyme form of type B S. aureus was determined. The deduced amino acid sequence revealed 3 residues in the leader peptide and 12 residues in the exoenzyme portion of the beta-lactamase that differ from the prototypic type A beta-lactamase sequence. These include the serine-to-asparagine change at residue 216 found in the kinetically similar type C enzyme, a threonine-to-lysine change at residue 128 close to the SDN loop (residues 130 to 132), and several substitutions not found in any of the other staphylococcal beta-lactamases. In summary, modern isolates of S. aureus typeable by group II phages produce type B or type C staphylococcal beta-lactamase. The type B gene resides on the chromosome and has a sequence that, when compared to the sequences of the other staphylococcal beta-lactamases, corresponds well with its kinetic properties.  相似文献   

11.
Comamonas acidovorans YM1609 secreted a polyhydroxybutyrate (PHB) depolymerase into the culture supernatant when it was cultivated on poly(3-hydroxybutyrate) [P(3HB)] or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] as the sole carbon source. The PHB depolymerase was purified from culture supernatant of C. acidovorans by two chromatographic methods, and its molecular mass was determined as 45,000 Da by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was stable at temperatures below 37 degrees C and at pH values of 6 to 10, and its activity was inhibited by diisopropyl fluorophosphonate. The liquid chromatography analysis of water-soluble products revealed that the primary product of enzymatic hydrolysis of P(3HB) was a dimer of 3-hydroxybutyric acid. Kinetics of enzymatic hydrolysis of P(3HB) film were studied. In addition, a gene encoding the PHB depolymerase was cloned from the C. acidovorans genomic library. The nucleotide sequence of this gene was found to encode a protein of 494 amino acids (M(r), 51,018 Da). Furthermore, by analysis of the N-terminal amino acid sequence of the purified enzyme, the molecular mass of the mature enzyme was calculated to be 48,628 Da. Analysis of the deduced amino acid sequence suggested a domain structure of the protein containing a catalytic domain, fibronectin type III module as linker, and a putative substrate-binding domain. Electron microscopic visualization of the mixture of P(3HB) single crystals and a fusion protein of putative substrate-binding domain with glutathione S-transferase demonstrated that the fusion protein adsorbed strongly and homogeneously to the surfaces of P(3HB) single crystals.  相似文献   

12.
The gene (xynA) encoding a surface-exposed, S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 was cloned and expressed in Escherichia coli. A 3.8-kb fragment was amplified from chromosomal DNA by using primers directed against conserved sequences of endoxylanases isolated from other thermophilic bacteria. This PCR product was used as a probe in Southern hybridizations to identify a 4.6-kb EcoRI fragment containing the complete xynA gene. This fragment was cloned into E. coli, and recombinant clones expressed significant levels of xylanase activity. The purified recombinant protein had an estimated molecular mass (150 kDa), temperature maximum (80 degrees C), pH optimum (pH 6.3), and isoelectric point (pH 4.5) that were similar to those of the endoxylanase isolated from strain JW/SL-YS 485. The entire insert was sequenced and analysis revealed a 4,044-bp open reading frame encoding a protein containing 1,348 amino acid residues (estimated molecular mass of 148 kDa).xynA was preceded by a putative promoter at -35 (TTAAT) and -10 (TATATT) and a potential ribosome binding site (AGGGAG) and was expressed constitutively in E. coli. The deduced amino acid sequence showed 30 to 96% similarity to sequences of family F beta-glycanases. A putative 32-amino-acid signal peptide was identified, and the C-terminal end of the protein contained three repeating sequences 59, 64, and 57 amino acids) that showed 46 to 68% similarity to repeating sequences at the N-terminal end of S-layer and S-layer-associated proteins from other gram-positive bacteria. These repeats could permit an interaction of the enzyme with the S-layer and tether it to the cell surface.  相似文献   

13.
A thermophilic polynucleotide phosphorylase lacking polynucleotide phosphoryltic activity was purified from Thermus thermophilus HB-8 strain. The enzyme is an altered form of the native polynucleotide phosphorylase, probably attacked by the proteinase(s) of this extreme thermophile during the purification process. This modified enzyme lacks phosphorolytic activity to poly(A) while retaining weak activity to phosphorolyse tetranucleotides or hexanucleotides. The purified enzyme was shown to be homogenous by electrophoretic analysis in polyacrylamide gel. This enzyme had a molecular weight of 190 000 as calculated both from electrophoresis on polyacrylamide gel and from the Stoke's radius derived from the gel filtration pattern and the sedimentation coefficient. The enzyme was separated into three polypeptide chains by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulphate; their molecular weights were calculated to be 92000, 73000 and 35000. The enzyme was thermophilic and thermotolerant, exhibiting its maximal activity at 70 degrees C. The four ribonucleoside diphosphates (ADP, GDP, UDP and CDP) were polymerized to the extent of 7-S size.  相似文献   

14.
One hundred and forty eight isolates of the genus Thermus, from neutral and alkaline hot water springs on four continents, have been screened for the presence of restriction endonuclease activity. An isolate (SM49) from the island of Sao Miguel, in the Azores, showed a high level of restriction endonuclease activity when a cell-free extract was incubated with lambda phage DNA at 65 degrees C. A Type II restriction endonuclease (Tsp49I) has been partially purified from this isolate and the recognition and cleavage site determined. Tsp49I recognizes the four base sequence ACGT, which is the same as the recognition sequence of the mesophilic Type II restriction endonuclease MaeII. However, unlike MaeII, which cleaves DNA between the first and second bass of the recognition sequence (A/CGT), Tsp49I hydrolyses the phosphodiester bond in both strands of the substrate after the last base of the recognition sequence 5'-ACGT/-3', producing four base 3'-OH overhangs (sticky ends). The enzyme has a pH optimum of 9.0, requires 2 mM MgCl2 for maximum activity and retains full enzyme activity following incubation for 10 min at temperatures up to 8O degrees C. Two further examples of the same restriction endonuclease specificity as Tsp491 were detected in Thermus isolates from Iceland (TspIDSI) and New Zealand (TspWAM8AI). The three MaeII neoschizomers, Tsp49I, TspIDSI and TspWAM8AI, exhibit similar pH optima, heat stabilities and MgCl2 requirements, but differ in their requirements for NaCl and KCl.  相似文献   

15.
Rhamnogalacturonase was purified from culture filtrate of Aspergillus aculeatus after growth in medium with sugar-beet pulp as carbon source. Purified protein was used to raise antibodies in mice and with the antiserum obtained a gene coding for rhamnogalacturonase (rhgA) was isolated from a lambda cDNA expression library. The cloned rhgA gene has an open-reading frame of 1320 base pairs encoding a protein of 440 amino acids with a predicted molecular mass of 45 962 Da. The protein contains a potential signal peptidase cleavage site behind Gly-18 and three potential sites for N-glycosylation. Limited homology with A. niger polygalacturonase amino acid sequences is found. A genomic clone of rhgA was isolated from a recombinant phage lambda genomic library. Comparison of the genomic and cDNA sequences revealed that the coding region of the gene is interrupted by three introns. Furthermore, amino acid sequences of four different peptides, derived from purified A. aculeatus rhamnogalacturonase, were also found in the deduced amino acid sequence of rhgA. A. aculeatus strains overexpressing rhamnogalacturonase were obtained by cotransformation using either the A. niger pyrA gene or the A. aculeatus pyrA gene as selection marker. For expression of rhamnogalacturonase in A. awamori the A. awamori pyrA gene was used as selection marker. Degradation patterns of modified hairy regions, determined by HPLC, show the recombinant rhamnogalacturonase to be active, and the enzyme was found to have a positive effect in the apple hot-mash liquefaction process.  相似文献   

16.
17.
A novel enzyme acting on starch and malto-oligosaccharides was identified and characterised. The non-hydrolytic enzyme, designated maltosyltransferase (MTase), of the hyperthermophilic bacterium Thermotoga maritima MSB8 disproportionates malto-oligosaccharides via glycosyl transfer reactions. The enzyme has a unique transfer specificity strictly confined to the transfer of maltosyl units. Incubation of MTase with starch or its constituents. i.e. amylose and amylopectin, led to the formation of a set of multiples of maltose (i.e. maltose, maltotetraose, maltohexaose etc.). Malto-oligosaccharides with a degree of polymerization (DP) X were disproportionated to products with a DP of X +/- 2n (with X > or = 3 and n = 0,1,2,...). Maximum activity in a 10-min assay was recorded at pH 6.5 and 85-90 degrees C. The enzyme displayed extraordinary resistance to thermal inactivation. For example, at 90, 85, and 70 degrees C (pH 6.5, 0.34 mg ml-1 protein), MTase half-lives of about 2.5 h, 17 h, and 21 days, respectively, were recorded. The gene for MTase, designated mmtA, was isolated from a gene library of T. maritima strain MSB8. Analysis of the MTase primary structure as deduced from the nucleotide sequence of mmtA revealed that the enzyme is not closely related to known protein sequences. However, low-level local similarity between MTase and the alpha-amylase enzyme family (glycosyl hydrolase family 13) was detected, including conserved acidic residues essential for catalysis. Therefore, MTase should be assigned to this family. Based on detailed sequence analyses and comparison with amylolytic enzymes of known crystal structure we propose that MTase contains a (beta/alpha)8-fold as the core supersecondary structure which is typical for the alpha-amylase family. On the other hand, MTase is unique in that it lacks several residues highly conserved throughout this family. Also, MTase possesses an extraordinarily large domain B (a domain typical for the alpha-amylase family, inserted between beta-strand 3 and alpha-helix 3 of the (beta/alpha)8-barrel fold).  相似文献   

18.
The natural sialidase of Clostridium septicum was purified and characterized in parallel with the recombinant enzyme expressed by Escherichia coli. The two enzymes exhibit almost identical properties. The maximum hydrolytic activity was measured at 37 degrees C in 60 mM sodium acetate buffer, pH 5.3. Glycoproteins like fetuin and saponified bovine submandibular gland mucin, most of them having alpha(2-6) linked sialic acids, are preferred substrates, while sialic acids from gangliosides, sialyllactoses, or the alpha(2-8) linked sialic acid polymer (colominic acid) are hydrolysed at lower rates. alpha(2-3) Linkages are more rapidly hydrolysed than alpha(2-6) bonds of sialyllactoses. The cleavage rate is markedly reduced by O-acetylation of the sialic acid moiety. These properties are similar to those of other secreted clostridial sialidases. The enzyme exists in mono-, di- and trimeric forms, the monomer exhibiting a molecular mass of 125 kDa, which is close to the protein mass of 111 kDa deduced from the nucleotide sequence of the cloned gene.  相似文献   

19.
The enzyme 3,4-dihydroxyphenylacetate:oxygen 2,3-oxidoreductase (decyclizing) (homoprotocatechuate 2,3-dioxygenase) was purified from the thermophilic organism Bacillus stearothermophilus, grown with j-hydroxyphenylacetic acid as a source of carbon. The enzyme appeared to be homogeneous as judged by disc-gel electrophoresis and sedimentation equilibrium measurements. The average molecular weight determined by three independent procedures was 106,000; the protein was globular and was dissociated in sodium dodecyl sulfate to give a species of molecular weight 33,000 to 35,000. The enzyme was fairly stable on heating and showed maximal activity at about 57 degrees C. An Arrhenius plot of Km for homoprotocatechuate was concave upward, with a break at 32 degrees C; an increase in delta H above this temperature was compensated by lower values of --delta S. Several properties of this enzyme are contrasted with those reported for homoprotocatechuate 2,3-dioxygenase purified by other workers from Pseudomonas ovalis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号