共查询到20条相似文献,搜索用时 46 毫秒
1.
本文针对模拟退火遗传算法存在的不足,结合并行进化思想,提出基于MPI的并行模拟退火遗传算法,分析了该并行算法的任务分配,通信开销,并通过测试函数进行仿真试验,表明该并行算法提高了算法的运行速度和收敛质量,更容易找到全局最优解,具有可扩展性,可以得到线性加速比。 相似文献
2.
研究无线传感器网络(WSN)数据融合技术。传感器节点计算能力、通信能力有限,WSN采用交叉重叠方式部署,导致冗余数据量大,需采用数据融合技术消除冗余和无效数据,节约网络通信能耗。结合遗传算法全局搜索和模拟退火算法局部搜索的优点,提出一种模拟退火遗传算法的WSN数据融合方法(SA-GA)。采用模拟退火遗传算法快速找到移动代理路由最优传感器节点序列,并实现数据融合。仿真实验结果表明,与遗传算法、模拟退火算法相比,SA-GA更能快速找到全局最优数据融合节点序列,并对数据进行有效融合,具有更小的网络能耗和网络延时。 相似文献
3.
研究网络负载均衡问题,由于现代网络负载具有高突发性、高实时等特点,针对网络资源利用率和流量控制问题,单纯的采用模拟退火或遗传算法无法适合其变化规律,导致网络资源利用率低,网络拥塞现象严重.为了提高网络资源利用率,使网络负载均衡更加合理,提出一种与模拟退火和遗传算法相融合的网络负载均衡方法.首先利用遗传算法对网络负载均衡问题进行全局搜索,使问题的解迅速处于全局最优区域附近,然后采用模拟退火算法在全局最优区域附近进行进一步局部寻优,找到网络负载均衡最优解.仿真结果表明,改善了全局搜索速度,提高了网络资源利用率,明显改善网络负载不均衡的状况. 相似文献
4.
模拟退火和并行遗传算法是两种较好的改进进化算法性能的方法。将这两种思想有机地结合起来,利用遗传算法能全局寻优的优势和模拟退火算法的爬山性能,提出了一种基于模拟退火并行遗传算法的Otsu双阈值医学图像分割算法。在该算法中,进化在多个不同的子群中并行进行,利用模拟退火算法的爬山性能,避免单种群进化过程中出现的过早收敛现象,提高整个算法的收敛速度。实验证明,这种新的图像分割算法与并行遗传算法相比,不仅能够对图像进行准确的分割,而且具有更强的精确性和稳定性。其收敛速度明显比并行遗传算法的Otsu双阈值医学图像分割快。 相似文献
5.
遗传算法优化BP网络初始权重用于入侵检测* 总被引:6,自引:0,他引:6
基于遗传算法的全局搜索和BP网络局部精确搜索的特性,将遗传算法与BP算法有机结合,先采用遗传算法优化BP网络初始权重,完成网络的训练过程,并将此方法运用于入侵检测中。实验证明,运用此方法有利于提高网络的收敛性,可在一定程度上提高入侵检测系统的准确率。 相似文献
6.
并行遗行/模拟退火混合算法及其应用 总被引:4,自引:0,他引:4
1 引言人们常常应用随机优化方法,例如:遗传算法GA(Genetic Algorithms),模拟退火算法SA(Simulated Annealing),爬山算法HC(Hill Climbing),Tabu算法等,解决复杂的非线性函数优化问题。这些方法通常需要大量的计算,从而导致运行时间开销较大。随着计算机及网络技术的高速发展,在高性能计算平台上并行化随机优化方法成为当今研究领域的热门。特别是Beowulf PCs Cluster技术的成熟,为研究人员提供了 相似文献
7.
一种基于并行策略的BP改进算法 总被引:1,自引:0,他引:1
介绍了BP神经网络的基本结构及原理,分析了其收敛慢的原因.为加快其收敛速度,结合带动量梯度下降法提出一种新的算法(PBBP),用多个学习速率不同但结构相同的网络进行并行训练,在每次迭代后都根据误差找出处于最佳状态的网络,并使其它网络的训练参数作适当变化再进行下一次迭代,直到整个网络的误差减小到允许范围内或达到训练次数要求,加快了其收敛速度,能够很好地脱离平坦区.通过在Matlab里编程进行仿真实验证明,该算法是可行的. 相似文献
8.
介绍了BP神经网络的基本结构及原理,分析了其收敛慢的原因。为加快其收敛速度,结合带动量梯度下降法提出一种新的算法(PBBP),用多个学习速率不同但结构相同的网络进行并行训练,在每次迭代后都根据误差找出处于最佳状态的网络,并使其它网络的训练参数作适当变化再进行下一次迭代,直到整个网络的误差减小到允许范围内或达到训练次数要求,加快了其收敛速度,能够很好地脱离平坦区。通过在Matlab里编程进行仿真实验证明,该算法是可行的。 相似文献
9.
一种基于遗传算法的BP网络改进方法 总被引:1,自引:0,他引:1
为克服和改进传统的BP算法的不足,发挥神经网络和遗传算法各自的优势,提出一种新的基于遗传算法的改进的BP网络训练方法。在美国手写体数字标准数据集MNIST库的实验结果表明,该方法提高了识别率,增加了网络的泛化能力,并且极大地节省了存储空间,缩短了学习时间。 相似文献
10.
11.
基于模拟退火的混合遗传算法研究 总被引:19,自引:2,他引:17
针对常规遗传算法会出现早熟现象、局部寻优能力较差等不足,在遗传算法运行中融入模拟退火算法算子,实现了模拟退火的良好局部搜索能力与遗传算法的全局搜索能力的结合。经验证,该混合算法可以显著提高遗传算法的运行效率和优化性能。 相似文献
12.
13.
混合遗传算法与模拟退火法 总被引:10,自引:0,他引:10
论文将适合全局搜索的遗传算法(GA)和适合局部搜索的模拟退火算法(SA)相结合,提出了混合GA-SA计算方法。一方面,算法采用混沌初始化,提高了初始群体的质量;另一方面,算法采用Gray编码以及动态自适应调节交叉概率和变异概率,提高了收敛速度,并有效防止种群早熟现象。实例验证了该算法的可行性和有效性。 相似文献
14.
15.
基于遗传模拟退火算法的门阵列布局方法 总被引:2,自引:1,他引:1
为实现门阵列模式布局,将遗传算法与模拟退火算法相结合,提出一种新的遗传模拟退火算法,利用遗传算法进行全局搜索,利用模拟退火法进行局部搜索,在进化过程中采用精英保留策略,对进化结果进行有选择的模拟退火操作,既加强了局部搜索能力又防止陷入局部最优。实验结果表明,与传统遗传算法相比,该算法能够有效提高全局搜索能力。 相似文献
16.
基于模拟退火遗传算法的控制系统优化设计 总被引:2,自引:0,他引:2
提出了一种基于模拟退火遗传算法的线性系统优化设计方法。该方法以控制系统的性能指标,包括瞬态指标和稳态指标及其组合为目标函数,实现了由传递函数描述的控制器的自动设计,而不必预选择特定的控制方案。遗传算法使用十进制数编码,配合使用模拟退火技术来得到更精细的调整。使用这种方法,不需要手工计算,就可以获得控制系统的最优性能。该设计方法还可以应用于非线性对象。 相似文献
17.
18.
19.
20.
针对传统遗传算法(SGA)容易“早熟”的不足,提出一种求解0-1背包问题(KP)的改进遗传算法。借鉴二重结构编码的解码处理方法设计了一种新解码方法,在保证解可行性的同时修正种群中无对应可行解的个体;采用模拟退火算法和改进的精英选择算子改进SGA。实例仿真结果验证了改进遗传算法在进化效率和最优解搜索能力上的优越性。 相似文献