首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

2.
High-performance Cu(InGa)Se2 (CIGS) thin-film absorbers with an intentionally graded band-gap structure have been fabricated by a simple two-stage method using In/Cu–Ga/Mo stacked precursors and H2Se gas. Additional sulfurization step to form a thin Cu(InGa)(SeS)2 (CIGSS) surface layer on the absorber is necesarry to improve the device performance. In order to understand the role of S incorporated into CIGS absorber, approaches with S are discussed. One approach is carried out by changing the condition of our absorber formation process. It is verified to be possible to incorporate more S into the CIGS absorber, but difficult to improve the device performance with higher S contained CIGS absorbers because of decrease in FF. The incorporated S is concluded to be effective to improve the pn heterojunction quality due to the passivation of surface and grain boundary of CIGS absorber through the formation of a thin CIGSS surface layer.  相似文献   

3.
The effects of sodium on off-stoichiometric Cu(In,Ga)Se2 (CIGS)-based thin films and solar cells were investigated. The CIGS-based films were deposited with intentionally incorporated Na2Se on Mo-coated SiOx/soda-lime glass substrates by a multi-step process. By sodium control technique high-efficiency ZnO : Al/CdS/CIGS solar cells with efficiencies of 10–13.5% range were obtained over an extremely wide Cu/(In + Ga) ratio range of 0.51–0.96, which has great merit for the large-area manufacturing process. The improved efficiency in the off-stoichiometric regions is mainly attributed to the increased acceptor concentration and the formation of the Cu(In,Ga)3Se5 phase films with p-type conductvity. A new type of solar cell with p-type Cu(In,Ga)3Se5 phase absorber materials is also suggested.  相似文献   

4.
Thin films based on CuInSe2 have become very successful as absorber layers for solar cells. It is only in the recent past that gallium (Ga) and sulfur (S) were incorporated into CuInSe2 in order to increase the energy band gap of the film to an optimum value with the ultimate aim of producing more efficient devices. This paper focuses on the incorporation of S into partly selenized CuInSe2 films in order to produce CuIn(Se,S)2 films with varying S/Se+S ratios, resulting in different band-gap energies. This was achieved by varying the conditions when selenizing Cu/In alloys in H2Se/Ar, and then exposing these various partly selenized films to H2S/Ar under identical conditions.  相似文献   

5.
Cu(In,Ga)(S,Se)2 thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe2, CuInSe2, In2Se3 and Ga2Se3 compounds and then annealing in H2S gas atmosphere. The annealing temperature was varied from 400 to 500 °C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se)2 thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 °C demonstrated Voc=535 mV, Isc=13.3 mA/cm2, FF=0.61 and efficiency=4.34% without AR-coating.  相似文献   

6.
Sulfurization of copper indium gallium diselenide (CIGS) thin films solar cell absorber has been used to enhance the open-circuit voltage of the device by increasing the band gap of the absorber near the interface. Sulfurization of a homogeneous co-evaporated Cu(InGa)Se2 thin film was studied in hydrogen sulfide and in a mixture of hydrogen sulfide and hydrogen selenide gases with the inclusion of oxygen. The structural and compositional properties of the absorber layer were investigated by XRD, EDS and AES. Sulfurization in hydrogen sulfide gas forms a fully converted sulfide layer at the top of the absorber layer, which in turn forms a barrier for the current collection. Sulfurization in a mixture of hydrogen sulfide and hydrogen selenide gases forms a wide band gap Cu(InGa)(SeS)2 layer at the surface, but at the same time there is Ga diffusion away from the surface with the inclusion of sulfur at the surface.  相似文献   

7.
Improved preparation process of a device quality Cu(In,Ga)Se2 (CIGS) thin film was proposed for production of CIGS solar cells. In–Ga–Se layer were deposited on Mo-coated soda-lime glass, and then the layer was exposed to Cu and Se fluxes to form Cu–Se/In–Ga–Se precursor film at substrate temperature of over 200°C. The precursor film was annealed in Se flux at substrate temperature of over 500°C to obtain high-quality CIGS film. The solar cell with a MgF2/ITO/ZnO/CdS/CIGS/Mo/glass structure showed an efficiency of 17.5% (Voc=0.634 V, Jsc=36.4 mA/cm2, FF=0.756).  相似文献   

8.
Thin film solar cells with chalcopyrite CuInSe2/Cu(InGa)Se2 (CIS/CIGS) absorber layers have attracted significant research interest as an important light-to-electricity converter with widespread commercialization prospects. When compared to the ternary CIS, the quaternary CIGS has more desirable optical band gap and has been found to be the most efficient among all the CIS-based derivatives. Amid various fabrication methods available for the absorber layer, electrodeposition may be the most effective alternative to the expensive vacuum based techniques. This paper reviewed the developments in the area of electrodeposition for the fabrication of the CIGS absorber layer. The difficulties in incorporating the optimum amount of Ga in the film and the likely mechanism behind the deposition were highlighted. The role of deposition parameters was discussed along with the phase and microstructure variation of an as-electrodeposited CIGS layer from a typical acid bath. Related novel strategies such as individual In, Ga and their binary alloy deposition for applications in CIGS solar cells were briefed.  相似文献   

9.
Thin film CuInS2:Ga solar cell absorber films were prepared by sequential evaporation of Cu–In–Ga precursors and sulfurization in sulfur vapor. The depth distribution of Ga was found to be highly inhomogeneous caused by CuGaS2 phase segregation at the back contact. Depending on overall Ga content and sulfurization temperature a quaternary CuGaxIn1−xS2 compound formed exhibiting a shift in absorber lattice constant and band gap. Micro Raman measurements showed that crystal quality was also affected by Ga. Open-circuit voltages well above 800 mV were achieved while sustaining high fill factors of 71%.  相似文献   

10.
We have developed the flexible Cu(In,Ga)Se2 (CIGS) solar cells on the stainless steel substrates with the insulating layer for the fabrication of the integrated module. The CIGS films have strong adhesion to the Mo films with insulating layers. An efficiency of 12.3% was achieved by the flexible CIGS solar cell with a structure of ITO/ZnO/CdS/CIGS/Mo/SiO2/stainless steel. The insertion of the SiO2 insulating layer did not have an influence on the formation of the CIGS film and solar cell performances.  相似文献   

11.
Improvement of the performance of Cu(InGa)Se2 (CIGS)-based thin film submodules by depositing high-quality ZnO:Ga (GZO) window layers with sputtering method is performed to aim for establishing deposition technology of GZO windows of CIGS submodules. In order to reduce damage onto CIGS absorber/Zn(O,S,OH)x buffer interface due to the bombardment of high-energy particles during DC sputtering process of GZO window layers, growth of multilayered GZO window layers is developed. By using RF/DC/DC sputtered GZO window layers instead of the conventional DC sputtered GZO window layers, fill factor (FF) and conversion efficiency are increased over 10%. Increasing short-circuit current density (Jsc) of CIGS submodules is also investigated by improving the transparency of GZO window layers. Furthermore, damp heat test of the sputtered GZO films is carried out, and it is found that the GZO films have good stability of electrical properties.  相似文献   

12.
The objective of this study is to find the key factors to improve Voc. In this study, pentanary Cu(InGa)(SeS)2 absorbers were prepared by selenization and sulfurization or a sulfurization after selenization (SAS) method. It is found that the “sulfurization degree” defined as a function of temperature and holding time at the sulfurization step is a key factor to enhance the Ga diffusion and improve Voc. It is also verified that increase in the temperature difference between selenization and sulfurization enhances the incorporation of S into the selenide absorber. Applying these findings related to Ga and S, Voc of 642 mV/cell and efficiency of 14.3% are achieved on a 30 cm×30 cm-sized soda-lime glass substrate.  相似文献   

13.
Thin CuInS2 films were prepared by sulfurization of Cu/In bi-layers. First, the precursor layer was electroplated onto the treated surface of Mo-coated glass. Observation of the cross-section prepared by focused ion beam (FIB) etching revealed that the void-free film was initially formed on the top surface of the precursor layer and continued to grow until the advancing front of the film reached the Mo layer. The nucleation of voids near the bottom of the CuInS2 film followed. To determine whether the condition of the Cu/In alloy influences the CuInS2 quality we investigated the Cu/In alloy state using FIB. We found that the annealed precursor of low Cu/In ratio (1.2) has several voids in the mid position in the layer compared with Cu-rich precursor (1.6). The cross-sectional view of the Cu-rich absorber layer is uniform compared with the low copper absorber layer. Thin film solar cells were fabricated using the CuInS2 film (Cu/In ratio: 1.2) as an optical absorber layer. It was found that the optimization of a sulfurization period is important in order to improve the cell efficiency. We have not yet obtained good results with high Cu-rich absorber because of a blister problem. This blister was found before sulfurization. So, we are going to solve this blister problem before sulfurization.  相似文献   

14.
The compositional distribution of Ga and S in Cu(InGa)(SeS)2 films fabricated by a simultaneous selenization and sulfization process was systematically investigated. At low H2Se/H2S reaction temperature (490 °C), most Ga remains at the back of the film adjacent to the Mo back contact. However, the Ga/III ratios at the top and bottom of the Cu(InGa)(SeS)2 layer monotonically increase and decrease with reaction temperatures, respectively. At T>550 °C, homogeneous distribution of elemental Ga and In through film is achieved. Further increase of the reaction temperature (e.g., T>550 °C) causes phase segregation on the surface of the Cu(InGa)(SeS)2 film confirmed by XRD, GIXRD and EDS analysis.  相似文献   

15.
Zn-compounds Zn(X,OH) (X=S,Se) buffer layers have been deposited by chemical bath (CBD) process on Cu(In,Ga)(S,Se)2 (CIGSS) with the aim of developing Cd-free CIGSS-based devices. The films are produced in alkaline aqueous solution containing ZnSO4, ammonia NH3 and XC(NH2)2. Optimum deposition conditions were established. The temperature (Tsub) of the chemical bath is found to be critical for the device quality. The thickness and good surface coverage were controlled by XPS-UPS photoemission spectroscopy. SEM study showed that the growth of ZnSe nuclei on CIGSS proceeds in lateral direction. Once the surface is covered the growth takes place in vertical direction . The ZnSe clusters grow in size and their elongated shapes cover the CIGSS surface. High efficiency of over 13% was obtained for both CIGSS/Zn(S,OH) and CIGSS/Zn(Se,OH)-based solar cells. Solar cells with CIGSS/Zn(Se,OH)x/ZnO/MgF2 structure show an active area efficiency up to 15.7%. Using Zn(Se,OH) buffer layer, efficiency of 11.7% was achieved with a 20 cm2 aperture-area monolithic minimodule.  相似文献   

16.
Progress in fabricating Cu(In,Ga)Se2 (CIGS) solar cells with ZnS(O,OH) buffer layers prepared by chemical bath deposition (CBD) is discussed in this paper. Such buffer layers could potentially replace CdS in the CIGS solar cell. Total-area conversion efficiency of up to 18.6% has been reported previously using ZnS(O,OH) prepared by CBD. The reported 100 nm CBD ZnS(O,OH) layer was prepared by at least three consecutive depositions, which would make it a relatively expensive replacement for CdS. The recent development of a ZnS(O,OH) layer that enabled to obtain high-efficiency devices using a single-layer CBD is reported in this paper. A 14.4%-efficient device is obtained by using one-layer CBD ZnS(O,OH) on commercial-grade Shell Solar Cu(In,Ga)(S,Se)2 (CIGSS) absorber and an up to 17.4% device is obtained by using two-layer CBD ZnS(O,OH) on an NREL CIGS absorber.  相似文献   

17.
CuIn1−xGaxSe2 (CIGS) thin films were formed from an electrodeposited CuInSe2 (CIS) precursor by thermal processing in vacuum in which the film stoichiometry was adjusted by adding In, Ga and Se. The structure, composition, morphology and opto-electronic properties of the as-deposited and selenized CIS precursors were characterized by various techniques. A 9.8% CIGS based thin film solar cell was developed using the electrodeposited and processed film. The cell structure consisted of Mo/CIGS/CdS/ZnO/MgF2. The cell parameters such as Jsc, Voc, FF and η were determined from I–V characterization of the cell.  相似文献   

18.
An adjustment of a conduction band offset (CBO) of a window/absorber heterointerface is important for high efficiency Cu(In,Ga)Se2 (CIGS) solar cells. In this study, the heterointerface recombination was characterized by the reduction of the thickness of a CdS layer and the adjustment of a CBO value by a Zn1−xMgxO (ZMO) layer. In ZnO/CdS/CIGS solar cells, open-circuit voltage (Voc) and shunt resistance (Rsh) decreased with reducing the CdS thickness. In constant, significant reductions of Voc and Rsh were not observed in ZMO/CdS/CIGS solar cells. With decreasing the CdS thickness, the CBO of (ZnO or ZMO)/CIGS become dominant for recombination. Also, the dominant mechanisms of recombination of the CIGS solar cells are discussed by the estimation of an activation energy obtained from temperature-dependent current-voltage measurements.  相似文献   

19.
Single-layered precursors comprising In and Cu11(In,Ga)9 were fabricated by one-step sputtering of a Cu-In-Ga ternary target, subsequently covered by an evaporated Se layer as the source of post-selenization, involving low-temperature (100 °C) homogenization and high-temperature (?450 °C) chalcogenization treatments. Initially it appears that the post-selenization process is inappropriate to fabricate device-quality CIGS absorber layers because the composite precursor is converted into (In,Ga)2Se3 and Cu3Se2 with segregated phases and roughened topography. However, adequately controlling the processing steps leads to a fully microstructure-homogenized precursor, offering a new route and chemical reaction process to fabricate Cu(In,Ga)Se (CIGS) absorber layer with sounding crystallinity.  相似文献   

20.
The effects of conduction band offset of window/Cu(In,Ga)Se2 (CIGS) layers in wide-gap CIGS based solar cells are investigated. In order to control the conduction band offset, a Zn1−xMgxO film was utilized as the window layer. We fabricated CIGS solar cells consisting of an ITO/Zn1−xMgxO/CdS/CIGS/Mo/glass structure with various CIGS band gaps (Eg≈0.97–1.43 eV). The solar cells with CIGS band gaps wider than 1.15 eV showed higher open circuit voltages and fill factors than those of conventional ZnO/CdS/CIGS solar cells. The improvement is attributed to the reduction of the CdS/CIGS interface recombination, and it is also supported by the theoretical analysis using device simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号