共查询到17条相似文献,搜索用时 78 毫秒
1.
半监督集成是将半监督学习与集成学习相结合的一种学习范式,它一方面通过无标记样本来提高集成学习的多样性,同时解决集成学习样本量不足的问题,另一方面集成多个分类器能够进一步提升半监督学习模型的性能。现有的研究从理论和实践两个角度证明了半监督学习与集成学习之间的互益性。针对当前半监督集成学习算法对无标记样本信息利用不完全的缺陷,文中提出了一种新的基于分类不确定性最小化的半监督集成学习(Classification Uncertainty Minimization-Based Semi-Supervised Ensemble Learning, CUM-SSEL)算法,它引入信息熵作为对无标记样本进行打标的置信度评判标准,通过最小化无标记样本打标过程中的不确定性迭代地训练分类器,实现对无标记样本的高效利用,以增强分类器的泛化性能。在标准的实验数据集上对CUM-SSEL算法的可行性、合理性和有效性进行了验证,实验表明:随着基分类器的增加,CUM-SSEL算法的训练呈现收敛的趋势,同时它能够获得优于Self-Training, Co-Training, Tri-Training, Semi-Boo... 相似文献
2.
提出一种应用于回归问题,以分类回归树为基学习器,并综合Boosting和Bagging算法的特点,利用变相似度聚类技术和贪婪算法来进行选择性集成学习的算法——SER-BagBoosting Trees算法。将其与几种常用的机器学习算法进行比较研究,得出该算法往往比其他集成学习算法具有更好的泛化性能和更高的运行效率。 相似文献
3.
半监督集成学习综述 总被引:3,自引:0,他引:3
半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学习进行组合来提升分类器泛化性能的机器学习新方法。首先,在分析半监督集成学习发展过程的基础上,发现半监督集成学习起源于基于分歧的半监督学习方法;然后,综合分析现有半监督集成学习方法,将其分为基于半监督的集成学习与基于集成的半监督学习两大类,并对主要的半监督集成方法进行了介绍;最后,对现有研究进了总结,并讨论了未来值得研究的问题。 相似文献
4.
5.
当前已有的数据流分类模型都需要大量已标记样本来进行训练,但在实际应用中,对大量样本标记的成本相对较高。针对此问题,提出了一种基于半监督学习的数据流混合集成分类算法SMEClass,选用混合模式来组织基础分类器,用K个决策树分类器投票表决为未标记数据添加标记,以提高数据类标的置信度,增强集成分类器的准确度,同时加入一个贝叶斯分类器来有效减少标记过程中产生的噪音数据。实验结果显示,SMEClass算法与最新基于半监督学习的集成分类算法相比,其准确率有所提高,在运行时间和抗噪能力方面有明显优势。 相似文献
6.
流形上的Laplacian半监督回归 总被引:2,自引:0,他引:2
把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累. 相似文献
7.
在监督或半监督学习的条件下对数据流集成分类进行研究是一个很有意义的方向.从基分类器、关键技术、集成策略等三个方面进行介绍,其中,基分类器主要介绍了决策树、神经网络、支持向量机等;关键技术从增量、在线等方面介绍;集成策略主要介绍了boosting、stacking等.对不同集成方法的优缺点、对比算法和实验数据集进行了总结与分析.最后给出了进一步研究方向,包括监督和半监督学习下对于概念漂移的处理、对于同质集成和异质集成的研究,无监督学习下的数据流集成分类等. 相似文献
8.
基于集成学习的半监督情感分类方法研究 总被引:1,自引:0,他引:1
情感分类旨在对文本所表达的情感色彩类别进行分类的任务。该文研究基于半监督学习的情感分类方法,即在很少规模的标注样本的基础上,借助非标注样本提高情感分类性能。为了提高半监督学习能力,该文提出了一种基于一致性标签的集成方法,用于融合两种主流的半监督情感分类方法:基于随机特征子空间的协同训练方法和标签传播方法。首先,使用这两种半监督学习方法训练出的分类器对未标注样本进行标注;其次,选取出标注一致的未标注样本;最后,使用这些挑选出的样本更新训练模型。实验结果表明,该方法能够有效降低对未标注样本的误标注率,从而获得比任一种半监督学习方法更好的分类效果。 相似文献
9.
10.
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。 相似文献
11.
如何构造差异性大的基分类器是集成学习研究的重点,为此提出迭代循环选择法:以最大化正则互信息为准则提取最优特征子集,进而基于此训练得到基分类器;同时以错分样本个数作为差异性度量准则来评价所得基分类器的性能,若满足条件则停止,反之则循环迭代直至结束.最后用加权投票法融合所选基分类器的识别结果.通过仿真实验验证算法的有效性,以支持向量机为分类器,在公共数据集UCI上进行实验,并与单SVM及经典的Bagging集成算法和特征Bagging集成算法进行对比.实验结果显示,该方法可获得较高的分类精度. 相似文献
12.
13.
利用流形正则化的思想,围绕半监督学习,提出了一种针对流形正则化的模式分类和回归分析的新算法.该算法基于流形上的正则化项和传统的正则化项相结合的方法,利用支持向量机分类与回归已有的结果,解决半监督学习的分类与回归问题,提高了泛化能力.该算法实现简单,无需调用其他程序.通过数值试验,验证了该算法具有较好的泛化能力,对噪音具有较强的鲁棒性.且在分类问题上,该算法在输入极少数有标签样本时,也能保持较好的分类效果;在回归问题上,也具有较好的学习精度,尤其在输入带有噪音的流形数据上时,表现就更为突出. 相似文献
14.
软件缺陷预测方法可以在项目的开发初期,通过预先识别出所有可能含有缺陷的软件模块来优化测试资源的分配。早期的缺陷预测研究大多集中于同项目缺陷预测,但同项目缺陷预测需要充足的历史数据,而在实际应用中可能需要预测的项目的历史数据较为稀缺,或这个项目是一个全新项目。因此跨项目缺陷预测问题成为当前软件缺陷预测领域内的一个研究热点,其研究挑战在于源项目与目标项目数据集间存在的分布差异性以及数据集内存在的类不平衡问题。受到基于搜索的软件工程思想的启发,论文提出了一种基于搜索的半监督集成跨项目软件缺陷预测方法S3EL。该方法首先通过调整训练集中各类数据的分布比例,构建出多个朴素贝叶斯基分类器,随后利用具有全局搜索能力的遗传算法,基于少量已标记目标实例对上述基分类器进行集成,并构建出最终的缺陷预测模型。在Promise数据集及AEEEM数据集上和多个经典的跨项目缺陷预测方法(Burak过滤法、Peters过滤法、TCA+、CODEP及HYDRA)进行了对比。以F1值作为评测指标,结果表明在大部分情况下,S3EL方法可以取得最好的预测性能。 相似文献
15.
在面对现实中广泛存在的不平衡数据分类问题时,大多数 传统分类算法假定数据集类分布是平衡的,分类结果偏向多数类,效果不理想。为此,提出了一种基于聚类融合欠抽样的改进AdaBoost分类算法。该算法首先进行聚类融合,根据样本权值从每个簇中抽取一定比例的多数类和全部的少数类组成平衡数据集。使用AdaBoost算法框架,对多数类和少数类的错分类给予不同的权重调整,选择性地集成分类效果较好的几个基分类器。实验结果表明,该算法在处理不平衡数据分类上具有一定的优势。 相似文献
16.
针对高维数据中的类标记仅与少部分特征关联紧密的问题,提出了基于排序聚合和聚类分组的特征随机选择集成学习方法。采用排序聚合技术对特征进行过滤,选出与样本分类相关的特征,以bicor关联系数作为关联衡量标准,利用近邻传播聚类算法进行分组,使不同组的特征互不关联,然后从每个分组中随机选择一个特征生成特征子集,便可得到多个既存在差异性又具备区分能力的特征子集,最后分别在对应的特征子空间训练基分类器,采用多数投票进行融合集成。在7个基因表达数据集上的实验结果表明,提出的方法分类误差较低,分类性能稳定,可扩展性好。 相似文献
17.
FSSD (fast and efficient subgroup set discovery)是一种子群发现算法, 旨在短时间内提供多样性模式集, 然而此算法为了减少运行时间, 选择域数量少的特征子集, 当特征子集与目标类不相关或者弱相关时, 模式集质量下降. 针对这个问题, 提出一种基于集成特征选择的FSSD算法,... 相似文献