首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
半监督集成学习综述   总被引:3,自引:0,他引:3  
半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学习进行组合来提升分类器泛化性能的机器学习新方法。首先,在分析半监督集成学习发展过程的基础上,发现半监督集成学习起源于基于分歧的半监督学习方法;然后,综合分析现有半监督集成学习方法,将其分为基于半监督的集成学习与基于集成的半监督学习两大类,并对主要的半监督集成方法进行了介绍;最后,对现有研究进了总结,并讨论了未来值得研究的问题。  相似文献   

2.
半监督集成是将半监督学习与集成学习相结合的一种学习范式,它一方面通过无标记样本来提高集成学习的多样性,同时解决集成学习样本量不足的问题,另一方面集成多个分类器能够进一步提升半监督学习模型的性能。现有的研究从理论和实践两个角度证明了半监督学习与集成学习之间的互益性。针对当前半监督集成学习算法对无标记样本信息利用不完全的缺陷,文中提出了一种新的基于分类不确定性最小化的半监督集成学习(Classification Uncertainty Minimization-Based Semi-Supervised Ensemble Learning, CUM-SSEL)算法,它引入信息熵作为对无标记样本进行打标的置信度评判标准,通过最小化无标记样本打标过程中的不确定性迭代地训练分类器,实现对无标记样本的高效利用,以增强分类器的泛化性能。在标准的实验数据集上对CUM-SSEL算法的可行性、合理性和有效性进行了验证,实验表明:随着基分类器的增加,CUM-SSEL算法的训练呈现收敛的趋势,同时它能够获得优于Self-Training, Co-Training, Tri-Training, Semi-Boo...  相似文献   

3.
半监督学习和集成学习是目前机器学习领域中的重要方法。半监督学习利用未标记样本,而集成学习综合多个弱学习器,以提高分类精度。针对名词型数据,本文提出一种融合聚类和集成学习的半监督分类方法SUCE。在不同的参数设置下,采用多个聚类算法生成大量的弱学习器;利用已有的类标签信息,对弱学习器进行评价和选择;通过集成弱学习器对测试集进行预分类,并将置信度高的样本放入训练集;利用扩展的训练集,使用ID3、Nave Bayes、 kNN、C4.5、OneR、Logistic等基础算法对其他样本进行分类。在UCI数据集上的实验结果表明,当训练样本较少时,本方法能稳定提高多数基础算法的准确性。  相似文献   

4.
基于Bagging的选择性聚类集成   总被引:27,自引:2,他引:25  
唐伟  周志华 《软件学报》2005,16(4):496-502
使用集成学习技术来提高聚类性能.由于聚类使用的训练样本缺乏期望输出,与监督学习下的集成相比,在对个体学习器进行结合时更加困难.通过对不同的聚类结果进行配准,并基于互信息权进行个体学习器的选择,提出了基于Bagging的选择性聚类集成算法.实验表明,该算法能够有效地改善聚类结果.  相似文献   

5.
当前已有的数据流分类模型都需要大量已标记样本来进行训练,但在实际应用中,对大量样本标记的成本相对较高。针对此问题,提出了一种基于半监督学习的数据流混合集成分类算法SMEClass,选用混合模式来组织基础分类器,用K个决策树分类器投票表决为未标记数据添加标记,以提高数据类标的置信度,增强集成分类器的准确度,同时加入一个贝叶斯分类器来有效减少标记过程中产生的噪音数据。实验结果显示,SMEClass算法与最新基于半监督学习的集成分类算法相比,其准确率有所提高,在运行时间和抗噪能力方面有明显优势。  相似文献   

6.
基于偏袒性半监督集成的SVM主动反馈方案   总被引:1,自引:0,他引:1  
现有的SVM主动反馈算法普遍受到小样本问题和不对称分布问题的制约。针对这些问题,文中提出一种基于偏袒性半监督集成的SVM主动反馈技术。该算法在集成学习框架中使用未标记数据以增加个体分类器之间的差异性,从而获得高效的集成分类模型。同时,高效的集成分类模型更有利于寻找富有信息样本,进而也提高主动反馈的效率。此外,文中还设计一种偏袒加权策略,使得集成分类模型对正样本给予更大的关注程度,以应对正负样本间的不对称分布问题。实验结果表明,偏袒性半监督集成可有效改进SVM主动反馈的性能,且文中算法的检索精度明显优于其它同类相关反馈算法。  相似文献   

7.
为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向量进行标记.为解决以往主动学习算法在选择最富有信息量的样本标记后,不再进一步利用未标记样本的问题,将Tri-training半监督学习方法引入SVM主动学习过程,选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本集中有利于学习器的信息.在UCI数据集上的实验表明,文中算法在标记样本较少时获得分类准确率较高和泛化性能较好的SVM分类器,降低SVM训练学习的样本标记代价.  相似文献   

8.
半监督学习过程中,由于无标记样本的随机选择造成分类器性能降低及不稳定性的情况经常发生;同时,面对仅包含少量有标记样本的高维数据的分类问题,传统的半监督学习算法效果不是很理想.为了解决这些问题,本文从探索数据样本空间和特征空间两个角度出发,提出一种结合随机子空间技术和集成技术的安全半监督学习算法(A safe semi-supervised learning algorithm combining stochastic subspace technology and ensemble technology,S3LSE),处理仅包含极少量有标记样本的高维数据分类问题.首先,S3LSE采用随机子空间技术将高维数据集分解为B个特征子集,并根据样本间的隐含信息对每个特征子集优化,形成B个最优特征子集;接着,将每个最优特征子集抽样形成G个样本子集,在每个样本子集中使用安全的样本标记方法扩充有标记样本,生成G个分类器,并对G个分类器进行集成;然后,对B个最优特征子集生成的B个集成分类器再次进行集成,实现高维数据的分类.最后,使用高维数据集模拟半监督学习过程进行实验,实验结果表明S3LSE具有较好的性能.  相似文献   

9.
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

10.
陈全  赵文辉  李洁  江雨燕 《微机发展》2010,(2):87-89,94
通过选择性集成可以获得比单个学习器和全部集成学习更好的学习效果,可以显著地提高学习系统的泛化性能。文中提出一种多层次选择性集成学习算法,即在基分类器中通过多次按权重进行部分选择,形成多个集成分类器,对形成的集成分类器进行再集成,最后通过对个集成分类器多数投票的方式决定算法的输出。针对决策树与神经网络模型在20个标准数据集对集成学习算法Ada—ens进行了实验研究,试验证明基于数据的集成学习算法的性能优于基于特征集的集成学习算法的性能,有更好的分类准确率和泛化性能。  相似文献   

11.
Ensemble learning learns from the training data by generating an ensemble of multiple base learners. It is well-known that to construct a good ensemble with strong generalization ability, the base learners are deemed to be accurate as well as diverse. In this paper, unlabeled data is exploited to facilitate ensemble learning by helping augment the diversity among the base learners. Specifically, a semi-supervised ensemble method named udeed, i.e. Unlabeled Data to Enhance Ensemble Diversity, is proposed. In contrast to existing semi-supervised ensemble methods which utilize unlabeled data by estimating error-prone pseudo-labels on them to enlarge the labeled data to improve base learners’ accuracies, udeed works by maximizing accuracies of base learners on labeled data while maximizing diversity among them on unlabeled data. Extensive experiments on 20 regular-scale and five large-scale data sets are conducted under the setting of either few or abundant labeled data. Experimental results show that udeed can effectively utilize unlabeled data for ensemble learning via diversity augmentation, and is highly competitive to well-established semi-supervised ensemble methods.  相似文献   

12.
基于集成学习的半监督情感分类方法研究   总被引:1,自引:0,他引:1  
情感分类旨在对文本所表达的情感色彩类别进行分类的任务。该文研究基于半监督学习的情感分类方法,即在很少规模的标注样本的基础上,借助非标注样本提高情感分类性能。为了提高半监督学习能力,该文提出了一种基于一致性标签的集成方法,用于融合两种主流的半监督情感分类方法:基于随机特征子空间的协同训练方法和标签传播方法。首先,使用这两种半监督学习方法训练出的分类器对未标注样本进行标注;其次,选取出标注一致的未标注样本;最后,使用这些挑选出的样本更新训练模型。实验结果表明,该方法能够有效降低对未标注样本的误标注率,从而获得比任一种半监督学习方法更好的分类效果。  相似文献   

13.
Many data mining applications have a large amount of data but labeling data is often di cult, expensive, or time consuming, as it requires human experts for annotation.Semi-supervised learning addresses this problem by using unlabeled data together with labeled data to improve the performance. Co-Training is a popular semi-supervised learning algorithm that has the assumptions that each example is represented by two or more redundantly su cient sets of features (views) and additionally these views are independent given the class. However, these assumptions are not satis ed in many real-world application domains. In this paper, a framework called Co-Training by Committee (CoBC) is proposed, in which an ensemble of diverse classi ers is used for semi-supervised learning that requires neither redundant and independent views nor di erent base learning algorithms. The framework is a general single-view semi-supervised learner that can be applied on any ensemble learner to build diverse committees. Experimental results of CoBC using Bagging, AdaBoost and the Random Subspace Method (RSM) as ensemble learners demonstrate that error diversity among classi ers leads to an e ective Co-Training style algorithm that maintains the diversity of the underlying ensemble.  相似文献   

14.
Some recent successful semi-supervised learning methods construct more than one learner from both labeled and unlabeled data for inductive learning. This paper proposes a novel multiple-view multiple-learner (MVML) framework for semi-supervised learning, which differs from previous methods in possession of both multiple views and multiple learners. This method adopts a co-training styled learning paradigm in enlarging labeled data from a much larger set of unlabeled data. To the best of our knowledge it is the first attempt to combine the advantages of multiple-view learning and ensemble learning for semi-supervised learning. The use of multiple views is promising to promote performance compared with single-view learning because information is more effectively exploited. At the same time, as an ensemble of classifiers is learned from each view, predictions with higher accuracies can be obtained than solely adopting one classifier from the same view. Experiments on different applications involving both multiple-view and single-view data sets show encouraging results of the proposed MVML method.  相似文献   

15.
在软件缺陷预测中,标记样本不足与类不平衡问题会影响预测结果.为了解决这些问题,文中提出基于半监督集成学习的软件缺陷预测方法.该方法利用大量存在的未标记样本进行学习,得到较好的分类器,同时能集成一系列弱分类器,减少多数类数据对预测产生的偏倚.考虑到预测风险成本问题,文中还采用训练样本集权重向量更新策略,降低有缺陷模块预测为无缺陷模块的风险.在NASA MDP数据集上的对比实验表明,文中方法具有较好的预测效果.  相似文献   

16.
针对传统基于远程监督的关系抽取方法中存在噪声和负例数据利用不足的问题,提出结合从句级远程监督和半监督集成学习的关系抽取方法.首先通过远程监督构建关系实例集,使用基于从句识别的去噪算法去除关系实例集中的噪声.然后抽取关系实例的词法特征并转化为分布式表征向量,构建特征数据集.最后选择特征数据集中所有正例数据和部分负例数据组成标注数据集,其余的负例数据组成未标注数据集,通过改进的半监督集成学习算法训练关系分类器.实验表明,相比基线方法,文中方法可以获得更高的分类准确率和召回率.  相似文献   

17.
AdaBoost is a highly effective ensemble learning method that combines several weak learners to produce a strong committee with higher accuracy. However, similar to other ensemble methods, AdaBoost uses a large number of base learners to produce the final outcome while addressing high-dimensional data. Thus, it poses a critical challenge in the form of high memory-space consumption. Feature selection methods can significantly reduce dimensionality in regression and have been established to be applicable in ensemble pruning. By pruning the ensemble, it is possible to generate a simpler ensemble with fewer base learners but a higher accuracy. In this article, we propose the minimax concave penalty (MCP) function to prune an AdaBoost ensemble to simplify the model and improve its accuracy simultaneously. The MCP penalty function is compared with LASSO and SCAD in terms of performance in pruning the ensemble. Experiments performed on real datasets demonstrate that MCP-pruning outperforms the other two methods. It can reduce the ensemble size effectively, and generate marginally more accurate predictions than the unpruned AdaBoost model.  相似文献   

18.
已有的数据流分类算法多采用有监督学习,需要使用大量已标记数据训练分类器,而获取已标记数据的成本很高,算法缺乏实用性。针对此问题,文中提出基于半监督学习的集成分类算法SEClass,能利用少量已标记数据和大量未标记数据,训练和更新集成分类器,并使用多数投票方式对测试数据进行分类。实验结果表明,使用同样数量的已标记训练数据,SEClass算法与最新的有监督集成分类算法相比,其准确率平均高5。33%。且运算时间随属性维度和类标签数量的增加呈线性增长,能够适用于高维、高速数据流分类问题。  相似文献   

19.
基于分歧的半监督学习   总被引:9,自引:0,他引:9  
周志华 《自动化学报》2013,39(11):1871-1878
传统监督学习通常需使用大量有标记的数据样本作为训练例,而在很多现实问题中,人们虽能容易地获得大批数据样本,但为数据 提供标记却需耗费很多人力物力.那么,在仅有少量有标记数据时,可否通过对大量未标记数据进行利用来提升学习性能呢?为此,半监督学习 成为近十多年来机器学习的一大研究热点.基于分歧的半监督学习是该领域的主流范型之一,它通过使用多个学习器来对未标记数据进行利用, 而学习器间的"分歧"对学习成效至关重要.本文将综述简介这方面的一些研究进展.  相似文献   

20.
Semi-supervised learning by disagreement   总被引:7,自引:2,他引:5  
In many real-world tasks, there are abundant unlabeled examples but the number of labeled training examples is limited, because labeling the examples requires human efforts and expertise. So, semi-supervised learning which tries to exploit unlabeled examples to improve learning performance has become a hot topic. Disagreement-based semi-supervised learning is an interesting paradigm, where multiple learners are trained for the task and the disagreements among the learners are exploited during the semi-supervised learning process. This survey article provides an introduction to research advances in this paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号