首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tests were carried out with rectangular spouted bed columns of different thickness, i.e., front-to-back dimension, while holding the column width and air-entry slot width constant, to investigate the effects on spoul stability and bed hydrodynamics. For the three sizes of glass beads and one size of polyethylene beads examined, increasing the column thickness led to three-dimensional effects, such as formation of multiple spouts, and affected such hydrodynamics variables as the minimum spouting velocity, maximum spoutable bed depth and maximum pressure drop.  相似文献   

2.
A three dimensional column was used to study the hydrodynamics of a three phase system: air, water and 3 mm glass beads. Various effects of the grid jets on bed hydrodynamics were investigated for both increasing and decreasing liquid superficial velocities. Three regimes were observed: spouted bed, spouted fluidized bed and three phase fluidized bed. The hydrodynamics of the two phase region above the bed was also studied. The gas holdup increased when the gas superficial velocity was increased but decreased when the liquid superficial velocity was increased. A correlation for the estimation of the gas holdup as a function of gas and liquid superficial velocities was established.  相似文献   

3.
Spouted beds of rectangular cross-section with gas entry through bottom slots have been proposed as a means of overcoming scale-up difficulties of conventional spouted beds. A study was undertaken of bed hydrodynamics in a thin slot-rectangular column of width 150 mm and slot width 2 to 20 mm for four types of particles. Flow regimes and bed hydrodynamics are qualitatively similar to those in cylindrical spouted beds, but there are significant quantitative differences caused by the different geometry. Slot width exerts a strong influence on such features as flow regimes, maximum spoutable bed height, minimum spouting velocity, pressure drop and fountain height.  相似文献   

4.
Spouted beds of rectangular cross-section with gas entry through bottom slots have been proposed as a means of overcoming scale-up difficulties of conventional spouted beds. A study was undertaken of bed hydrodynamics in a thin slot-rectangular column of width 150 mm and slot width 2 to 20 mm for four types of particles. Flow regimes and bed hydrodynamics are qualitatively similar to those in cylindrical spouted beds, but there are significant quantitative differences caused by the different geometry. Slot width exerts a strong influence on such features as flow regimes, maximum spoutable bed height, minimum spouting velocity, pressure drop and fountain height.  相似文献   

5.
Experiments were carried out in a half slot-rectangular spouted bed to investigate the effects of slot width and lower section basal angle on column hydrodynamics. Flow regimes, minimum spouting velocity, spouting and maximum pressure drops, and maximum spoutable bed height were determined for 4 mm diameter polyethylene particles. The results are compared with those for conventional cylindrical and rectangular spouted beds. Correlations for each hydrodynamic parameter are developed and compared with equations available in the literature.  相似文献   

6.
Experiments were carried out in a half slot-rectangular spouted bed to investigate the effects of slot width and lower section basal angle on column hydrodynamics. Flow regimes, minimum spouting velocity, spouting and maximum pressure drops, and maximum spoutable bed height were determined for 4?mm diameter polyethylene particles. The results are compared with those for conventional cylindrical and rectangular spouted beds. Correlations for each hydrodynamic parameter are developed and compared with equations available in the literature.  相似文献   

7.
The effects of air‐flow pulsation and water and air flowrates on the hydrodynamics of liquid—gas and three‐phase fluidized beds containing 3‐mm glass beads have been studied in a 90‐mm i.d. column. Under steady‐flow conditions, both types of bed contained a relatively large number of small bubbles. With a pulsing air flow, however, a smaller number of much larger bubbles or slugs were formed. This was attributed to different mechanisms of bubble formation at the distributor. Variations in phase holdup were explained in terms of the effects of the operating parameters on the bubble characteristics.  相似文献   

8.
The hydrodynamics of two (water-air, water-solids) and three (water-air-solids) phase fluidized beds have been studied in a large two-dimensional column. Two solids were used, namely 6 mm glass beads and 2.6 mm irregular gravel. The individual phase holds-ups, bed expansion, and axial mixing characteristics were measured. The data were correlated empirically by equations involving liquid and gas phase Reynolds and Froude numbers, and the ratios of the particle and fluid densities. Bubble sizes and rising velocities were determined photographically and found to be of great importance in determining the hydrodynamics of the different beds.  相似文献   

9.
Local voidages were determined using optical fibre probes for 1.4 and 2.4 mm glass beads in slot‐rectangular spouted beds of width 150 mm. The effects of air inlet flow rate, slot width and bed thickness were investigated. Spout widths were determined from standard deviations of local voidage fluctuations. Both spout and annulus voidages increased with increasing air flow. Annulus voidages were usually higher than corresponding loose‐packed voidages and decreased with increasing height. Annulus and spout voidages were very sensitive to the air entry slot width and particle diameter. With increasing height, spouts became increasingly circular (three‐dimensional), despite the initial rectangular geometry.  相似文献   

10.
Wall-to-bed heat transfer characteristics have been investigated in a rectangular spout-fluid (S–F) bed segment column (20 cm length, 5 cm width and 50 cm height) utilizing glass beads (Dp = 0.254, 0.388 and 0.461 mm) and air as fluid. Results indicate that h values in the S–F bed increase with increasing air mass velocity and particle diameter, and decrease with increasing bed height. Under identical flow conditions h values in the S–F bed were about 30% more than for the corresponding fluidized bed.  相似文献   

11.
网格尺度、时间步长和颗粒堆积率对射流床CFD模拟的影响   总被引:3,自引:0,他引:3  
采用欧拉-欧拉双流体模型,在CFX4.4软件上增加用户自定义子程序模拟了高2.0 m、宽0.3 m的二维射流床内空气和玻璃珠体系的流体动力学特性. 考察了网格尺度、最大颗粒堆积率和时间步长对射流的形成及发展过程、射流穿透深度及射流频率的影响,并与实验数据进行了对比. 结果表明,对于本研究的气固体系,当床层下部纵向网格数为100、时间步长0.0005 s时,不仅可以满足网格尺度和时间步长的无关性要求,而且模拟的射流穿透深度和射流频率与实验测量值的误差分别为5.7%和3.8%. 最大颗粒堆积率在本研究范围对模拟结果的影响可以忽略.  相似文献   

12.
Pressure fluctuation data recorded in slot‐rectangular spouted beds of 1.44 mm diameter glass beads were analyzed with the aid of statistical and chaotic tools. The column width was maintained at 150 mm, while the thickness and slot width were both varied. It is shown that there are significant shifts in both statistical and chaos measures as the gas flow rate is increased. The results suggest that pressure fluctuations can be used to provide diagnostics of flow regime transitions in spouted beds when viewing is impossible.  相似文献   

13.
Environmental friendly cellulose/chitin beads, having relatively high mechanical properties, were successfully prepared from a blend of cellulose and chitin in 6 wt % NaOH/5 wt % thiourea aqueous solution by coagulating with 5% H2SO4 aqueous solution. The ability of the beads to adsorb Pb2+ in an aqueous solution was measured with a fixed‐bed column. The effects of important parameters, to design an adsorption column of the cellulose/chitin beads for fixed‐bed columns, were investigated. The breakthrough curves for the adsorption behavior indicated that the column performance was improved with decreasing initial lead concentration, ionic strength, flow velocity or bead size, as well as increasing pH dependence and bed height. Column studies showed that constants, calculated from the experimental data, and the Bed Depth Service Time (BDST) model had a good correlation. The columns were easily regenerated by treating with 0.1 mol/L HCl aqueous solution after the adsorption of metals, providing a simple and economical method for removal and recovery of heavy metals. After four adsorption–desorption cycles, the efficiency of column for the removal of lead was not significantly reduced (not more than 5%). It is shown that heavy‐metal biosorption processes in fixed‐bed columns could give a broad range of potential industrial applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 684–691, 2004  相似文献   

14.
Fluidized beds are interesting and useful processing systems that are employed in many industries such as processing biomass into biofuels or the coating of pharmaceuticals. Knowledge of fluidized bed hydrodynamics is necessary for the design and scale-up of such devices. This paper describes the local time-average differences of gas holdup in a 10.2 cm and 15.2 cm diameter cold flow fluidized bed that were recorded using 3D X-ray computed tomography. Three different Geldart type B bed materials are studied at various superficial gas velocities and side-air injection flow rates, where the side-air injection simulated the immediate volatilization of a fuel like coal or biomass particles. Variations in side-air injection flow rate have little influence on global bed hydrodynamics, but significantly affects local gas holdup. Axial annular flow dominates over all flow conditions for each material and bed diameter. Wall effects increasingly influence hydrodynamics as bed diameter decreases for all materials.  相似文献   

15.
The present study depicts the hydrodynamics and the mixing characteristics in a millichannel-based serpentine fixed-bed device to attain the particular demands of the miniature adsorption devices' fabrication. Residence time distribution analyses were accomplished to analyze the velocity distribution inside the packed bed geometry. The effects of operating variables on the system hydrodynamics and mixing and their impact on the lead adsorption characteristics were enunciated. New correlations were proposed for the frictional resistance and axial dispersion of the fluid. The parametric effects on the lead ions [Pb(II)] adsorption were studied in the same millichannel geometry packed with the graphene oxide coated glass beads. The kinetics of the adsorptive removal process is assessed by the Thomas model and the Yoon–Nelson model. The regeneration study of the said millichannel-based fixed-bed device was also executed.  相似文献   

16.
The hydrodynamics of fluidized beds strongly influence their operation, but are complicated and chaotic. There are many measurement techniques, but none fully characterizes gas-solid fluidized beds. Acoustic signals from fluidized beds cover a wide frequency spectrum and can be correlated to bed characteristics. Experiments were conducted to study the acoustic signals from ultrasonic transducers mounted on the outer wall of a two-dimensional fluidization column. The acoustic signals were related to bubble behavior in 550 μm glass beads. Simultaneous acoustic and pressure measurements allowed direct comparison of these signals for single bubbles, pairs and chains of bubbles. The envelope of acoustic signals, generated by particle collisions and particle-wall impacts, provided information on the behavior of bubbles. Significant peaks appeared as the top portions of the bubble wakes approached the acoustic sensor. Pressure waves propagated considerably in the horizontal direction, whereas acoustic signals propagated little in the lateral direction, but transmitted forward in the wall in the direction of bubble motion, maintaining the wave profile invariant during transmission. The strong lateral localization of acoustic signals is promising for determining the lateral bubble position in the bed. Acoustic signals provide a potential means of determining such bubble properties as velocity, frequency and volume, with some advantages relative to pressure signals.  相似文献   

17.
Characterizing the hydrodynamics of a fluidized bed is of vital importance to understanding the behavior of this multiphase flow system. Minimum fluidization velocity and gas holdup are two of these key characteristics. Experimental studies addressing the effects of bed height and material density on the minimum fluidization velocity and gas holdup were carried out in this study using a 10.2 cm diameter cylindrical fluidized bed. Three different Geldart type-B particles were tested: glass beads, ground walnut shell, and ground corncob, with material densities of 2600, 1300, and 1000 kg/m3, respectively. The particle size range was selected to be the same for all three materials and corresponded to 500–600 μm. In this study, five different bed height-to-diameter ratios were investigated: H/D=0.5, 1, 1.5, 2, and 3. Minimum fluidization velocity was determined for each H/D ratio using pressure drop measurements. Local time-average gas holdup was determined using non-invasive X-ray computed tomography imaging. Results show that minimum fluidization velocity is not affected by the change in bed height. However, as the material density increased, the minimum fluidization velocity increased. Finally, local time-average gas holdup values revealed that bed hydrodynamics were similar for all bed heights, but differed when the material density was changed.  相似文献   

18.
Two dense pellicular agarose-glass matrices of different sizes and densities, I.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, I.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.  相似文献   

19.
Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.  相似文献   

20.
Large sand particles with a 1 mm mean diameter were fluidized in large beds with different widths to determine the effect of wall spacing on bed hydrodynamics. The bed cross-section ranged from 1.2 m × 1.2 m to 7.6 cm × 1.2 m. When the open bed width was equal to or larger than five times the mean bubble diameter, the bubble behavior was independent of bed width. A maximum upper limit to the bubble size was not observed. When a horizontal tube bank was added to the bed, the bubble characteristics approached results at smaller open bed widths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号