共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
文中以平直翅片热管散热器为研究对象,研究了翅片厚度、翅片间距、翅片高度、翅片宽度和热管直径 5 个结构参数对翅片换热性能和阻力特性的影响,采用正交实验设计的方法设计了上述结构参数的 15 个组合方案,利用 CFD 数值模拟的方法对每个组合方案下翅片的流动换热性能进行了模拟。以努塞尔数 Nu 、阻力系数f、传热性能综合评价指标(Performance Evaluation Criteria, PEC)作为评价指标,在每个评价指标下利用极差分析挑选出性能最优的组合方案。 该方法能快速获得散热器结构的优化方案,并分析出主要影响因素,对工程应用有一定的指导意义。 结果表明:影响 Nu 和 f 的最主要因素是热管直径,影响 PEC 的最主要因素是翅片厚度。 对于本文研究的散热器,其最优参数组合方案为:翅片厚度为 0. 6 mm,翅片间距为 2. 2 mm,热管直径为 6 mm,翅片高度为 65 mm,翅片宽度为 28 mm。 相似文献
4.
针对三维坐标系下,整体翅片叉排热管散热器的流动和传热特性进行数值模拟研究.分析了四个主要影响因素:翅片间距、翅片厚度、排间距和管排布对努塞尔数、流动摩擦因数和热阻的影响.管排布分别为4-3叉排和3-2叉排,翅片间距分别为6mm、7mm和8mm,翅片厚度分别为0.8mm、1mm和1.2mm,排间距分别为20mm、24mm和28mm.计算结果表明:随着翅片厚度的增加,摩擦因数减小,换热能力增强,热阻有所上升;随着翅片间距的增大,摩擦因数增大,换热能力提高,而热阻基本为增加趋势;当热管排列方式从4-3叉排变为3-2叉排后,摩擦因数增加,但Re较大时,摩擦因数趋于相同,换热能力明显下降,但热阻呈下降趋势. 相似文献
5.
为提升散热器的综合性能,以开窗角度为27°、翅片波距为2. 4 mm的百叶窗翅片散热器为基础,提出基于此结构改良的8种变角度翅片结构。采用Fluent软件进行数值模拟,通过对5种入口风速下8种变角度翅片结构的传热因子j与阻力因子f进行分析,探讨8种变角度翅片结构的优劣。研究表明,各变角度翅片结构均有效提升了散热器的传热性能,均对翅片的阻力性能影响较小,其中对散热器翅片综合性能提升最大的攻角渐变值Δθ=1. 2°,采用变角度翅片结构的散热器最高可提升6. 54%的传热性能,最高可增加1. 5%的散热量。 相似文献
6.
7.
8.
9.
散热器翅片结构对流体流动及换热过程影响的数值仿真研究 总被引:1,自引:1,他引:1
用CFD软件FLUENT对散热器常用的平翅片和波纹翅片表面的流体流动及换热过程进行了数值模拟,获得了翅片表面的流场、温度场、压力场以及换热量、换热系数的变化规律。模拟结果表明在相同气流量的条件下,波纹翅片的压力损失比平翅片的大,平均表面换热系数及换热量均比平翅片的高,翅片的形状结构对流场分布和强化换热效果的影响较大。 相似文献
10.
采用数值计算方法,进行了波纹翅片传热与流动阻力特性的仿真研究。计算了波纹翅片上下表面换热系数沿着流动长度方向的变化特性;进行了波纹翅片无量纲曲率半径对换热系数、努塞尔数、管道压降、摩擦因子、管道进出口空气温差等的影响研究,绘制了波纹翅片换热性能评价图。研究结果表明,波纹翅片上下表面换热系数的大小沿着翅片长度方向呈现正弦形式波动,波动幅值逐渐较小;无量纲曲率半径的减小有利于提高波纹翅片的换热效果,但波纹翅片内空气流动的阻力也随之增大;换热性能评价图显示波纹翅片换热性能的增长率小于流动阻力的增长率。该研究内容为机车及动车组板翅式换热器空气翅片选型提供参考。 相似文献
11.
12.
在螺旋板式换热器螺旋通道内设置三角翼和椭圆柱组合涡发生器,利用流体计算软件Fluent进行三维数值模拟。研究了Re为4000~7000内组合涡发生器对通道平均Nu和平均阻力系数f的影响,并应用场协同原理进行了分析。与只加装椭圆柱涡发生器的螺旋板式换热器进行对比,结果表明,纵向涡发生器产生的二次流能改善螺旋通道内的速度场与温度场的协同性,起到强化换热作用。在正三角形排列方式下,组合涡发生器通道的平均Nu比椭圆柱涡发生器的平均Nu增大8.7%,阻力因子f减小23.7%,强化换热的效果较好。 相似文献
13.
14.
Weiming Wang Dayong Li Jie Hu Yinghong Peng Yishun Zhang Deyuan Li 《The International Journal of Advanced Manufacturing Technology》2005,26(5-6):537-543
A computational fluid dynamics (CFD) simulation for analyzing fluid flow patterns in a plasma spray gun is presented in this study. It is coupled with a heat transfer simulation of the plasma spray gun. Based on CFD and heat transfer theory, the numerical model of the nozzle in the plasma spray gun is developed, and the coupled simulation of the flow fluid and heat transfer is carried out with the semi-implicit method for pressure-linked equations (SIMPLE) method. Local turbulence, which will lead to appearance of a static-water region, is found at the front corner of the cooling channel in the nozzle. The locations insufficiently cooled are found in the wall near the heat source and in the gasket in the rear of the nozzle. Then, cooling processes with different parameters of cooling water are analyzed. The optimal velocity and direction of cooling water, which efficiently cool the nozzle and improve the service life of the plasma jet, are obtained . 相似文献
15.
16.
17.
18.
S. Wannapakhe S. Rittidech B. Bubphachot O. Watanabe 《Journal of Mechanical Science and Technology》2009,23(6):1576-1582
This research investigated the effect of aspect ratios (evaporator length to inner diameter of capillary tube), inclination
angles, and concentrations of silver nanofluid on the heat transfer rate of a closed-loop oscillating heat pipe with check
valves (CLOHP/CV). The CLOHP/CV was made from copper tubing with an internal diameter of 2 mm. Two check valves were inserted
into the tube. The tube had 40 meandering turns. The length of the evaporator was 50, 100, and 150 mm. The lengths of the
evaporator, adiabatic, and condenser section were equal. The concentration of silver nanofluid was 0.25, 0.5, 0.75, and 1
%w/v, and the operating temperature was 40, 50, and, 60°C. It was found that the heat transfer rate of the CLOHP/CV using
silver nanofluid as a working fluid was better than that the heat transfer rate when pure water is used because the silver
nanofluid increases the heat flux by more than 10%.
This paper was recommended for publication in revised form by Associate Editor Man Yeong Ha
Sakultala Wannapakhe received her B.Eng. degree in Mechanical Engineering (Manufacturing) from Mahasarakham University, Thailand, in 2005. She
then received her M. Eng. degree in Mechanical Engineering from Mahasarakham University, Thailand, in 2007. Sakultala Wannapakhe
is currently a Ph.D. student in Energy Technology at Mahasarakham University, Thailand.
Sampan Rittidech received his Ph.D. degree in Mechanical Engineering from Chiang Mai University, Thailand, in 2002. Dr. Sampan Rittidech is
currently an Associate Professor at the Faculty of Engineering at Mahasarakham University in Thailand. Dr. Sampan’s research
interests include heat transfer, heat pipe, and heat exchanger.
Bopit Bubphachot received his Ph.D. degree in Engineering Mechanics and Energy from University of Tsukuba, Japan, in 2008. Dr. Bopit Bubphachot
is currently an Lecturer at the Faculty of Engineering at Mahasarakham University in Thailand. Dr. Bopit’s research interests
include Metal Forming (Fine Blanking Process), FEM Simulation in Metal Forming Process and Fatigue and Creep-Fatigue strength
for Perforated Plate.
Osamu Watanabe received his Ph.D. degree in Engineering from University of Tokyo, Japan, in 1981. Dr. Osamu Watanabe is currently a Professor
at Graduate School of Systems and Information Engineering at University of Tsukuba, Japan. Dr. Osamu’s research interests
include inelastic behavior, material strength in nuclear or thermal plants, code and standard for plant technology. 相似文献