首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow stress identification of work-piece materials for its use in machining operation simulation models has been long treated. The interest in defining the flow stress in an easy and fast way without using complicated dynamic characterization tests leads to analyse the inverse identification of flow stress employing cutting operations. This paper presents a revision of different aspects concerning the inverse algorithms applied to the primary shear zone (PSZ). It also presents a new approach for studying material's behaviour on the secondary shear zone (SSZ) where experimentally measured temperatures have been included in the inverse algorithm. Two steels, 42CrMo4 and 20NiCrMo5 are employed and finite element method (FEM) simulations are carried out in order to evaluate the usefulness of the calculated flow stress laws and proposed algorithm.  相似文献   

2.
The purpose of this study is to determine the heat flux distribution and to estimate the workpiece temperature in creep feed grinding. The sequential algorithm of the inverse heat transfer was used for determining the heat flux distribution. The amount of heat flux to the workpiece, the energy partition and the convective heat transfer coefficients both at the front and at the back of the heat flux were determined. Three heat source models using the determined amount of heat flux were applied to estimate the workpiece temperature. The workpiece temperatures estimated by the heat source models were compared with that measured by the embedded thermocouple. The scalene triangle model correlated best with measured and theoretical temperature profiles obtained for creep feed grinding.  相似文献   

3.
In this study, a thermal analysis model is developed to determine temperature distribution in orthogonal metal cutting using finite elements method. The model calculates the temperature distribution as a function of heat generation. The heat generation was introduced in the primary deformation zone, the secondary deformation zone and along the sliding frictional zone at the tool–chip interface, as well. The location and shapes of these zones was determined based on the literature work done so far and the model results. The temperature dependency of material properties was included in the model. A series of thermal simulations have been performed, and the value and location of maximum temperature have been determined for various cutting conditions. The comparison of the simulations with earlier works gave promising trend for the presented model. The thermal aspects of metal cutting as a result of the model findings were discussed.  相似文献   

4.
By using experimental data including the monitored temperature and power signals, combined with detailed theoretical analysis, the relationship between the undeformed grinding chip thickness and specific grinding energy has been studied and used to derive the heat flux distribution along the wheel-work contact zone. The relationship between the grinding chip thickness and specific grinding energy (SGE) has been shown to follow an exponential trend over a wide range of material removal rates. The distribution of the total grinding heat flux, qt, along the grinding zone does not follow a simple linear form. It increases at the trailing edge with sharp gradients and then varies nearly linearly for the remainder of the contact length. The heat flux entering into the workpiece, qw, is estimated by matching the measured and theoretical grinding temperatures, and it has been found that the square law heat flux distribution seems to give the best match, although the triangular heat flux is good enough for most cases to generate accurate temperature predictions. With the known heat flux distributions of qt and qw, the heat flux to the grinding fluid can then be estimated once the heat partitioning to the grinding wheel is determined by the Hahn model for a grain sliding on a workpiece. The convective heat transfer coefficient of the grinding fluid has been shown to vary along the grinding zone. An understanding of this variation is important in order to optimise the grinding fluid supply strategy, especially under deep grinding conditions when contact lengths are large. It has been demonstrated that the down grinding mode can provide a beneficial fluid supply condition, in which the fluid enters the grinding zone at the position of highest material removal where a high convective cooling function is needed.  相似文献   

5.
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed under an applied pressure 30, 60 and 90 MPa in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in the 5-step casting were determined based on thermal histories throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTCs were evaluated using the polynomial curve fitting method and numerical inverse method. For numerical inverse method, a solution algorithm was developed based on the function specification method to solve the inverse heat conduction equations. The IHTCs curves for five steps versus time were displayed. As the applied pressures increased, the IHTC peak value of each step was increased accordingly. It can be observed that the peak IHTC value decreased as the step became thinner. Furthermore, the accuracy of these curves was analyzed by the direct modeling calculation. The results indicated that heat flux and IHTCs determined by the inverse method were more accurately than those from the extrapolated fitting method.  相似文献   

6.
This paper presents recent developments of a simplified finite element method called the inverse approach (IA) for the estimation of large elastoplastic strains and thickness distribution in tube hydroforming. The basic formulation of the IA, proposed by Guo et al. (1990), has been modified and adapted for the modeling of three-dimensional tube hydroforming problems in which the initial geometry is a circular tube expanded by internal pressure and submitted to axial feed at the tube ends. The application of the IA is illustrated through the analyses of numerical applications concerning the hydroforming of axisymmetric bulge, made from aluminum alloy 6061-T6 tubing, the hydroforming of square section hollow component and the hydroforming of a free Tee extrusion from welded low carbon steel LCS-1008 tubing. Verifications of the obtained results have been carried out using experimental results together with the classical explicit dynamic incremental approach using ABAQUS® commercial code to show the effectiveness of our approach.  相似文献   

7.
李岗  刘伟涛  许云华 《铸造技术》2007,28(5):702-704
基于漏钢预报中实时监测结晶器铜板受热状态的需要,建立了二维稳态热传导模型,在Vc++6.0平台下编制了传热反问题计算程序(IHCP_2D),该程序能通过结晶器铜板中有限个热电偶的测量值,快速反算出铜板受热面上的热流密度和温度分布.通过对一组实测数据的分析,验证了程序的可靠性.  相似文献   

8.
The use of numerical simulations for investigating machining processes is remarkably increasing because of the simulation cost is lower than the experiments and the possibility to analyze local variables such as pressures, strains, and temperatures is allowable. Process simulation is very hard from a computational point of view, since it frequently requires remeshing phases and very small time steps. As a consequence, the simulated cutting time is usually of the order of few milliseconds and no steady cutting conditions are generally achieved, at least as far as thermal conditions are concerned. Therefore, nowadays numerical prediction of cutting temperatures cannot be considered fully reliable. In the paper this issue was taken into account: a mixed Lagrangian-Eulerian numerical approach was utilized and the global heat transfer (film) coefficient at the tool-chip interface was derived through an inverse approach. Finally, the dependence of the film coefficient on pressure and temperature on the rake face was investigated.  相似文献   

9.
The distortion control of heat-treated steel parts is a main consideration when dealing with hardening by quenching process. Before implementing this heat treating process, prediction of distortion is necessary to be done by experiment and computer simulation for determining a quenching technique which gives the smaller distortion. Temperature-dependent heat transfer coefficient (HTC) estimated from SUS304 cylinder can be determined by both iterative modification of lumped heat capacity method (LumpHC) and inverse heat transfer method (InvHT). Predicted HTC from silver probe is needed for the LumpHC, whereas initial set of assumption is needed for the InvHT. The zone-based HTC estimated from SUS304 cylinder then is employed on S45C cylinder. The prediction accuracy results from both methods are evaluated. As expected, stir quenching gives less distortion than that of still quenching. More accurate prediction of cooling curves, cooling rate curves, and distortion is achieved by employing the LumpHC than that by the InvHT. All analyses were performed by DEFORM-HT 2D.  相似文献   

10.
对比5种中碳钢保护渣对结晶器热流的影响,发现不同的保护渣对结晶器的热流有明显的影响,结晶器热流过大或热流稳定性越差铸坯产生纵裂的概率越大.对渣膜取样研究表明,保护渣对结晶器热流的控制是通过渣膜结构来实现的,要得到控制热流好的渣膜结构必须保证渣膜的高结晶率.总结出了适合邯钢中碳钢生产的保护渣组成.  相似文献   

11.
The development of cutting simulation still requires an improvement in the understanding of the frictional phenomena at the tool-work material interface. This paper introduces a method for a fast identification of friction and heat partition models, based on a special tribometer able to simulate wide ranges of contact pressures and sliding velocities, similar to those occurring along the tool-work material interface in cutting. The method is applied for a wide spectrum of work materials and lubrication conditions. Combined with an analytical post-treatment, this set-up provides a modelling of the frictional behaviour that may improve significantly thermal aspects in cutting simulations.  相似文献   

12.
Residual stresses in the machined surface layers are affected by the cutting tool, work material, cutting regime parameters (cutting speed, feed and depth of cut) and contact conditions at the tool/chip and tool/workpiece interfaces. In this paper, the effects of tool geometry, tool coating and cutting regime parameters on residual stress distribution in the machined surface and subsurface of AISI 316L steel are experimentally and numerically investigated. In the former case, the X-ray diffraction technique is applied, while in the latter an elastic–viscoplastic FEM formulation is implemented. The results show that residual stresses increase with most of the cutting parameters, including cutting speed, uncut chip thickness and tool cutting edge radius. However, from the range of cutting parameters investigated, uncut chip thickness seems to be the parameter that has the strongest influence on residual stresses. The results also show that sequential cuts tend to increase superficial residual stresses.  相似文献   

13.
14.
This paper presents a simplified experimental technique to determine approximately the cutting stiffness and the contact stiffness in the plunge grinding process. The experimental methodology consists of a machine static stiffness test and several grinding processes. The cutting stiffness is obtained from the workpiece headstock static stiffness and from its displacement during the grinding processes, measured by a LVDT transducer. The contact stiffness is resolved from the expression that relates it with the grinding process time constant and other grinding parameters. The time constant is obtained from the exponential that characterises the machine deformation during the spark-out, measured as well by the LVDT transducer placed on the workpiece headstock. The variation of the obtained values of the contact stiffness with some of the grinding parameters is also shown.  相似文献   

15.
Press and tool deflections have significant influence on the accuracy of products and tool service life in cold-forging processes. This paper presents a combined experimental-numerical approach to determine the deflections of the workpiece-tool-press (WTP) system and tool loads to improve product accuracy in a multistage cold-forging process. The measurements of deflections of the vertical mechanical press for the determination of the press flexibility matrix were performed in dynamic operating conditions. Numerical modelling of the vertical mechanical press and a multistage forging system was performed in order to evaluate the tool loads, the displacements and the rotations of the entire WTP system. The press flexibility matrix in combination with finite element (FE) model of the press and multistage process enable predictions of the elastic displacements and rotations of the tool and the press ram as well as determination of the evolution of the resultant force in order to design a reliable multistage cold-forging process. By redesigning the time sequences and evolution of the multistage forming operations during the press stroke, the evolution of the resultant force and the torque are optimized. This approach has been successfully applied to improve the prediction of tool loads, WTP deflections and rotations for the production of the automotive starter side plate.  相似文献   

16.
In order to explore the adaptability of a thick film diamond tool to the finish machining of composites, tool wear and its effect factors as well the machined surface roughness are investigated in this paper. The experimental results show that the thick film diamond tool has a low wear rate and the machined surface cut with the tool has a fine finish for the cutting of composites. The negative rake is beneficial for the tool standing wear and collision.  相似文献   

17.
PCBN刀具磨出负倒棱是为了加强刀具的刃口强度,以减少刀具加工时可能出现的破损情况。本文通过对PCBN刀具加工淬硬轴承钢GCr15的一系列试验数据加以分析,得出倒棱前角和切削力、刀具磨损之间的关系,进而得出在实际加工情况下应该采用的最佳倒棱前角值。试验表明:当倒棱前角取15度且切削速度为125m/s时,刀具具有最好的加工效果,不但切削力可以达到最小值,刀具磨损最轻,而且刀具寿命也达到了最大值。  相似文献   

18.
This paper revisited some wheel–workpiece interaction problems in surface grinding including the profile of heat flux and the variation of the wheel’s elastic modulus. A method of using an optical microscope and a CCD camera was applied to capture the depth and width of the heated zone, the details of the temperature field and the stability of the heat flux. It was found that the heat flux in up-grinding can be modeled as a triangle with its apex at the inlet of the wheel–workpiece contact arc. The elastic modulus of the grinding wheel decreases significantly when the grinding temperature is beyond a critical value and can be described by a power law. It was also found that the depth of cut has almost no effect on the partition of the grinding energy.  相似文献   

19.
In cutting of brittle materials, experimentally it was observed that there is a ductile–brittle transition when the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius of the zero rake angle. However, how the crack is initiated in the ductile–brittle mode transition as the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius has not been fully understood. In this study, the crack initiation in the ductile–brittle mode transition as the undeformed chip thickness is increased from smaller to larger than the tool cutting edge radius has been simulated using the Molecular Dynamics (MD) method on nanoscale cutting of monocrystalline silicon with a non-zero edge radius tool, from which, for the first time, a peak deformation zone in the chip formation zone has been found in the transition from ductile mode to brittle mode cutting. The results show that as the undeformed chip thickness is larger than the cutting edge radius, in the chip formation zone there is a peak deformation depth in association with the connecting point of tool edge arc and the rake face, and there is a crack initiation zone in the undeformed workpiece next to the peak deformation zone, in which the material is tensile stressed and the tensile stress is perpendicular to the direction from the connecting point to the peak. As the undeformed chip thickness is smaller than the cutting edge radius, there is no deformation peak in the chip formation zone, and thus there is no crack initiation zone formed in the undeformed workpiece. This finding explains well the ductile–brittle transition as the undeformed chip thickness increases from smaller to larger than the tool cutting edge radius.  相似文献   

20.
助焊剂中的表面活性剂对于降低熔融无铅钎料的表面张力,增加无铅钎料对母材的润湿性具有重要作用.根据表面活性剂的HLB值和分子量,选取了四种不同类型的表面活性剂.以无水乙醇作溶剂,有机酸作活性剂,加入所选表面活性剂,并添加成膜剂、缓蚀剂等其他成分,配制成助焊剂,用于研究表面活性剂对无铅钎料润湿性能的影响.润湿力测试及铺展实...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号