共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to reveal the effect of V–Ti addition on the microstructure evolution and the mechanical properties of hot-rolled transformation-induced plasticity(TRIP) steel, two steels with 0.072 V–0.051 Ti steel(Bear-V–Ti steel) and 0.001 V–0.001 Ti steel(Free-V–Ti steel) were designed, respectively, and the comparison analyses were carried out by performing thermodynamic calculation and an experiment. With the thermodynamic calculation, the critical annealing temperature of a large fraction of retained austenite(~51%) obtained via solute enrichment was determined, and an optimized quenching at 650 °C and tempering at 200 °C adopted on the as-hot-rolled steel. The results show that the V–Ti TRIP steel displays more optimum mechanical stability during the tensile deformation, since the fraction and the mechanical stability of retained austenite are improved and the microstructure is also ultrarefined by V–Ti alloy precipitation. The yield strength of Bear-V–Ti steel increases from 650 to 800 MPa, and the ductility reaches 37%, showing that the comprehensive mechanical properties are greatly improved. 相似文献
2.
Laser fusion brazing welding was proposed.Galvanized steel/AA6061 lapped joint was obtained by laser fusion brazing welding technique using the laser-induced aluminium molten pool spreading and wetting the solid steel surface.Wide joint interface was formed using the rectangular laser beam coupled with the synchronous powder feeding.The result showed that the tiny structure with the composition of a-Al and Al–Si eutectic was formed in the weld close to the Al side.And close to the steel side,a layer of compact Fe–Al–Si intermetallics,including the Al-rich FeAl3,Fe2Al5 phases and Al–Fe–Si s1 phase,was generated with the thickness of about 10–20 lm.Transverse tensile shows the brittlefractured characteristic along to the seam/steel interface with the maximum yield strength of 152.5 MPa due to the existence of hardening phases s1 and Al–Fe intermetallics. 相似文献
3.
A 12%Cr ferritic/martensitic steel,HT-9,has been used as a primary core material for nuclear reactors.The microstructure and mechanical properties of gas tungsten arc butt welded joints of HT-9 in as-welded,and as-tempered conditions have been explored.In as-welded condition,the fusion zone (FZ) contained a fresh martensite matrix with delta (δ)-ferrite.Theδ-ferrite was rich in Cr and depleted in C compared with the matrix.The heat-aff ected zone (HAZ) could be divided into three areas as the distance from the fusion line increased:δ-ferrite/martensite duplex zone,fully recrystallized zone,and partly recrystallized zone.Prior austenitic grains did not coarsen in theδ-ferrite/martensite duplex zone due to the newly nucleatedδ-ferrite grains and incompletely ferritizing (δ-ferrite) during the welding thermal cycle.The weldment microhardness distributed heterogeneously with values above 600 HV _(1.0 )in the HAZ and FZ and 250 HV _(1.0 )in the base metal (BM).Solute C in the matrix,induced by the dissolution of carbide during the welding process,dominated the microhardness variation.Low toughness was observed in the FZ with a quasi-cleavage fracture tested from-80 to 20℃.The tensile fracture occurred in the relatively soft BM tested from 20 to 600℃.In as-tempered condition (760℃ for 1 h),M _(23 )C _6-type carbides precipitated within the martensitic laths,the lath boundaries,and theδ-ferrite/martensite interfaces.Moreover,V,Cr,Mo-rich nitrides with very small size also precipitated in theδ-ferrite/martensite interface.The tempering treatment improved the homogenous distribution of weldment hardness significantly.Tensile fracture still occurred in the BM of the weldment specimens tested from 20 to 600℃.The impact toughness improved significantly,but the ductile–brittle transaction temperature was-12℃ which was higher than that of the normalized and tempered (NT) BM.δ-ferrite was considered to be one of the major factors aggravating the impact toughness in the FZ. 相似文献
4.
Ti–6Al–4V rods were butt-welded by rotary friction welding in this study. Additionally, the radial differences in microstructure and mechanical property of joints were investigated by hierarchy slicing method. The results displayed that the width of weld zone and heat-affected zone of joints became wider along radial direction. Meanwhile, the tensile strength of joints decreased gradually along the radial direction. According to the theoretical analysis, the temperature gradient and inhomogeneous forging pressure leaded to the radial differences. Through K-type thermocouples, the actual temperatures at different locations were measured, and the results were consistent with the theoretical analysis. Theoretically, the radial differences of rotary friction welding joint are an inherent phenomenon; thus, the size of weldment should be limited strictly below the corresponding critical size. In order to prevent radial differences from enlarging, the welding surface profile of weldment can be processed into oval shape, and a larger forging pressure can be used within the scope of the joint deformation allowed according to causes for radial differences. 相似文献
5.
In this work, the influence of the Zener-Hollomon (Z) parameter on the microstructure and mechanical properties of copper subjected to friction stir welding (FSW) was investigated. Liquid N2 cooling was conducted to control the cooling rate after the FSW. The obtained results demonstrate that the Z parameter was dependent on the tool rotation rate during the FSW, i.e., a higher tool rotating rate resulted in a lower Z parameter. The grain size in the stir zone decreased with the increase in the Z parameter. The relationship between the yield strength and the Z parameter is established as σ0.2 = σ0 + kZn. This relationship exhibited two different plots under the conditions of air cooling and liquid N2 cooling. Even at a similar Z parameter, a significant yield strength difference occurred because massive dislocations, which were caused by the prevention of the post-annealing effect, were maintained in the stir zone. This study suggests that the influence of the post-annealing effect should not be neglected when analyzing the relationship between the Z parameter, microstructure, and mechanical properties. 相似文献
6.
用OM、SEM等手段分析了不同激光焊接工艺参数下焊缝成形和其微观组织特征,并测试了焊缝的力学性能。结果表明:0.8mm厚钛合金板激光穿透焊离焦量范围约在-2mm~+2mm之间,最佳离焦量为-0.5mm。随焊接线能量的增大,焊缝熔宽和背面宽度都呈增大趋势,且背面宽度的增加更为显著。TC4合金焊缝为针状马氏体α′组成的网篮组织。随着焊接热输入量的增加,马氏体的形态由平行的单相针转变为多相针,分布更加密集和散乱。不同焊接工艺参数下接头的强度均高于母材,塑性低于母材。 相似文献
7.
8.
X80 pipeline steel plates were friction stir welded(FSW) under air, water, liquid CO_2 + water, and liquid CO_2 cooling conditions, producing defect-free welds. The microstructural evolution and mechanical properties of these FSW joints were studied. Coarse granular bainite was observed in the nugget zone(NZ) under air cooling, and lath bainite and lath martensite increased signifi cantly as the cooling medium temperature reduced. In particular, under the liquid CO_2 cooling condition, a dual phase structure of lath martensite and fi ne ferrite appeared in the NZ. Compared to the case under air cooling, a strong shear texture was identifi ed in the NZs under other rapid cooling conditions, because the partial deformation at elevated temperature was retained through higher cooling rates. Under liquid CO_2 cooling, the highest transverse tensile strength and elongation of the joint reached 92% and 82% of those of the basal metal(BM), respectively, due to the weak tempering softening. A maximum impact energy of up to 93% of that of the BM was obtained in the NZ under liquid CO_2 cooling, which was attributed to the operation of the dual phase of lath martensite and fi ne ferrite. 相似文献
9.
10.
30CrMnSiNi2A钢由于其出色的质强比成为制造飞机起落架、襟翼的重要材料。电子束焊的焊接速度对工程应用中30CrMnSiNi2A钢的微观结构和机械性能产生极大影响。接头微观组织从热影响区细小等轴的回火索氏体与马氏体混合组织,转变为焊缝区域的树枝状板条马氏体晶粒。显微硬度由母材向焊缝中心逐渐增高,焊缝区域显微硬度最高可达690HV0.2,约为母材的两倍;拉伸强度最高为842MPa,达到母材强度的96.9%。此外随着焊接速度的提高,晶粒尺寸减小,显微硬度随之提高;但HAGB和渗碳体数量的下降对接头强度不利,使得接头抗拉强度随焊接速度提高而下降,不同焊接速度下接头断裂模式均为脆性断裂。 相似文献
11.
Pengcheng Zhu Lin Zhang Zhaochang Li K. H. Lo Jianfeng Wang Yufeng Sun Shaokang Guan 《金属学报(英文版)》2022,35(7):1079
In this study, 2.4 mm thick high-strength martensitic steel plates with a tensile strength of 1500 MPa were friction stir welded at various welding speeds of 40, 60, 80, 100, 120 mm/min and a constant rotation speed of 300 rpm. Sound joints could be obtained when the welding speed was 40, 60 and 80 mm/min, while a kissing bond was found in the joint welded at 100 and 120 mm/min. It was revealed that the peak temperature exceeded AC3 (the end temperature at which all ferrite transformed to austenite when the steel was heated) for all the welding conditions and martensitic structures were finally formed in the stir zone of the joints. A significant decrease in hardness was located in the heat-affected zone, which had a transitional microstructure from tempered martensite near base metal to a mixed structure containing hard martensite, soft ferrite and bainite near stir zone. For the sound joints, the specimen was fractured in the heat-affected zone during tensile tests and the highest tensile strength could reach about 1058 MPa. 相似文献
12.
Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding
Hongduo Wang Kuaishe Wang Wen Wang Yongxin Lu Pai Peng Peng Han Ke Qiao Zhihao Liu Lei Wang 《金属学报(英文版)》2020,33(11):1556-1570
This study focuses on the microstructure and mechanical properties of the joints of Q235 mild steel, which was formed by the friction stir welding (FSW). The results indicated that, after the FSW, the heat-affected zone (HAZ) of the retreating side (HAZRS) and the HAZ of the advancing side (HAZAS) recovered under the influence of the heating cycle. The transformation of the phases in the thermo-mechanically affected zone (TMAZ) of the retreating side (TMAZRS), the stir zone (SZ) and the TMAZ of the advancing side (TMAZAS) generated the pearlite and acicular ferrite. The continuous dynamic recrystallization occurred in all the three zones, whereas the grains were refined. The SZ mainly consisted of D1, D2 and F shear textures, while the TMAZAS was made up of only the F shear texture. The fine-grained structure, pearlite and the acicular ferrite improved the hardness and tensile strength of the joint. Its ultimate tensile strength was 479 MPa, which was 1.3% higher than that of the base metal. However, the uniform elongation was 16%, which showed a decrease of 33%. The fracture was a ductile fracture with the appearance of dimples. Besides, the joints of the FSW showed an excellent bending performance. 相似文献
13.
14.
采用搅拌摩擦焊对3 mm厚的1350工业纯铝板材进行了对接,考察了ω/υ值对搅拌摩擦焊接头的组织和力学性能的影响.结果表明,在ω/v=5.0 r/mm时得到的接头表面粗糙,并且有隧道型孔洞生成,ω/v=8.3 r/mm时接头有“S”曲线缺陷生成,ω/v>8.3 r/mm的条件下可以得到外表面美观、内部无缺陷的接头.搅拌区的面积和晶粒尺寸随着ω/v值的增大而增大.搅拌区的硬度变化趋势与ω/v值变化趋势不同.接头的抗拉强度、伸长率在ω/v值为5.0~10.0 r/mm范围内随着ω/v值增大而升高,ω/v为10.0 r/mm时达到最大值,进一步增大ω/v值将降低接头的力学性能.接头拉伸断口SEM显示,在ω/v>8.3 r/mm时存在与母材类似的韧窝和撕裂棱,表明搅拌摩擦焊接头基本保持了母材良好的塑性. 相似文献
15.
Dissimilar welded joints of reduced activation ferritic/martensitic (RAFM) steel and 316L austenitic stainless steel were prepared by friction stir welding with different butt joining modes and welding parameters. The weld quality of the joint was improved by placing the 316L steel on the advancing side and the RAFM steel on the retreating side, and using a relatively high rotational speed of 400 rpm. The microstructure of the stir zone on the 316L steel side consisted of single-phase austenite, and the microstructure of the stir zone on the RAFM steel side mainly consisted of lath martensite and equiaxed ferrite. A mechanical mixture of the two steels and diffusion of Cr and Ni could be detected near the bonding interface. Diffusion of Ni from the 316L steel to the RAFM steel resulted in the formation of a dual-phase structure consisting of austenite and ferrite. The as-welded joints showed good strength and ductility at room temperature and 550 °C, which were nearly equal to those of the 316L base material. The heat-affected zone on the RAFM side had the lowest impact toughness throughout the weld with a value of 13.2 J at - 40 °C, ~ 52% that of the RAFM base material. 相似文献
16.
In this study, the effect of isothermal temperature on microstructure and mechanical properties of a high Al-low Si TRIP steel was investigated using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electron back scattered diffraction, and tensile test. The results show that typical microstructure containing ferrite, bainite, and retained austenite can be obtained when two-stage heat treatment process was utilized. When annealing temperature is 840 ℃ and austempering temperature is 400 ℃, the tensile strength is 542 MPa and the product of strength and elongation is 17,685 MPa%. The morphologies and stability of the retained austenite in low silicon/high aluminum TRIP steel were finally discussed. 相似文献
17.
18.
本文以GH4169高温合金闪光焊接件为研究对象,研究了热处理对焊缝试样的组织与力学性能的影响规律。结果表明,在焊接热量的作用下强化相γ′′、γ′发生回溶,致使焊接区的强度、硬度均明显低于基体。通过固溶处理后基体的强度降低到和焊缝试样一致,可实现拉伸变形过程中焊接区与基体的均匀变形。对焊缝试样在固溶前和固溶后进行1.2%拉伸塑性变形,经过时效处理(720 ℃8 h(60 ℃/h)-620 ℃8 h AC(空冷))后发现,少量塑性变形对其力学性能几乎没有影响。经固溶时效处理后焊缝试样拉伸强度指标与基体材料相比变化不大,但塑性指标低于基体试样,这与其热影响区存在粗大晶粒有关。 相似文献
19.
The 1,000 MPa ultra-high strength hot-rolled plate steel with low-carbon bainitic microstructure was developed in the laboratory for coal mine refuge chamber. The static recrystallization behavior, microstructure evolution, and mechanical properties of this hot-rolled plate steel were investigated by the hot compression, continuous cooling transformation, and tensile deformation test. The results show that the developed steel has excellent mechanical properties at both room and elevated temperature, and its microstructure mainly consists of lath bainite, granular bainite, and ferrite after thermal–mechanical control process(TMCP). The ultra-high strength plate steel is obtained by the TMCP process in hot rolling, strengthened by bainitic transformation, microstructure refinement, and precipitation of alloying elements such as Nb, Ti, Mo, and Cu. The experimental steel has relatively low welding crack sensitivity index and high atmospheric corrosion resistance index. Therefore, the developed steel has a good balance of strength and ductility both at room and elevated temperature, weldability and corrosion resistance, and it can suffice for the basic demands for materials in the manufacture of coal mine refuge chamber. 相似文献
20.
Changsheng Li Biao Ma Tao Li Tao Zhu 《金属学报(英文版)》2014,(3):422-429
The 1,000 MPa ultra-high strength hot-rolled plate steel with low-carbon bainitic microstructure was developed in the laboratory for coal mine refuge chamber. The static recrystallization behavior, microstructure evolution, and mechanical properties of this hot-rolled plate steel were investigated by the hot compression, continuous cooling trans- formation, and tensile deformation test. The results show that the developed steel has excellent mechanical properties at both room and elevated temperature, and its microstructure mainly consists of lath bainite, granular bainite, and ferrite after thermal-mechanical control process (TMCP). The ultra-high strength plate steel is obtained by the TMCP process in hot rolling, strengthened by bainitic transformation, microstructure refinement, and precipitation of alloying elements such as Nb, Ti, Mo, and Cu. The experimental steel has relatively low welding crack sensitivity index and high atmospheric corrosion resistance index. Therefore, the developed steel has a good balance of strength and ductility both at room and elevated temperature, weldability and corrosion resistance, and it can suffice for the basic demands for materials in the manufacture of coal mine refuge chamber. 相似文献