共查询到19条相似文献,搜索用时 78 毫秒
1.
基于深度学习的图像语义分割方法综述 总被引:5,自引:0,他引:5
近年来,深度学习技术已经广泛应用到图像语义分割领域.主要对基于深度学习的图像语义分割的经典方法与研究现状进行分类、梳理和总结.根据分割特点和处理粒度的不同,将基于深度学习的图像语义分割方法分为基于区域分类的图像语义分割方法和基于像素分类的图像语义分割方法.把基于像素分类的图像语义分割方法进一步细分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法.对每类方法的代表性算法进行了分析介绍,并详细总结了每类方法的基本思想和优缺点,系统地阐述了深度学习对图像语义分割领域的贡献.对图像语义分割相关实验进行了分析对比,并介绍了图像语义分割实验中常用公共数据集和性能评价指标.最后,预测并分析总结了该领域未来可能的研究方向及相应的发展趋势. 相似文献
2.
为了降低语义分割任务的标注成本,提出一种基于自监督图像对的弱监督语义分割算法Co-Net。首先,将一对图像分别输入骨干网络中提取图像对特征;然后,将特征展开加入位置信息送入编码层中进行编码;接着,将编码特征送入协同注意力模块(CoAM)以及双向自注意力模块(BiAM)中进行信息相互表征;最后,将图像区域掩码模型(MRM)以及图像对匹配(IPM)两种自监督任务用于网络训练,学习图像对中的全局关联以及局部关联,以此得到更加精确的初始化种子。仅使用图像级标签进行弱监督语义分割,在Pascal VOC 2012验证和测试集上分别实现了69.8%和70.3%的平均交并比(mIoU),相较于同样为图像对输入的算法GroupWSSS(Group-Wise Semantic mining for weakly Supervised Semantic Segmentation),验证集、测试集上的mIoU分别提高了1.6、1.8个百分点。实验结果表明,所提算法可以获得更加完整的目标激活区域。 相似文献
3.
图像级标签的弱监督图像语义分割方法是目前比较热门的研究方向,类激活图生成方式是最为常用的解决该类问题的主要工作方法。由于类激活图的稀疏性,导致判别区域的准确性降低。针对上述问题,提出了一种改进的Transformer网络弱监督图像学习方法。首先,引入空间注意力交换层来扩大类激活图的覆盖范围;其次,进一步设计了一个注意力自适应模块,来指导模型增强弱区域的类响应;特别地,在类生成过程中,构建了一个自适应跨域来提高模型分类性能。该方法在Pascal VOC 2012 验证集和测试集上分别达到了73.5%和73.0%。实验结果表明,细化Transformer网络学习方法有助于提高弱监督图像的语义分割性能。 相似文献
4.
点云分割是点云数据理解中的一个关键技术,但传统算法无法进行实时语义分割。近年来深度学习被应用在点云分割上并取得了重要进展。综述了近四年来基于深度学习的点云分割的最新工作,按基本思想分为基于视图和投影的方法、基于体素的方法、无序点云的方法、有序点云的方法以及无监督学习的方法,并简要评述;最后分析各类方法优劣并展望未来研究趋势。 相似文献
6.
目前基于图像级标注的弱监督语义分割方法大多依赖类激活初始响应以定位分割对象区域.然而,类激活响应图通常只集中在对象最具辨别性的区域,存在目标区域范围较小、边界模糊等缺点,导致最终分割区域不完整.针对此问题,文中提出基于显著性背景引导的弱监督语义分割网络.首先通过图像显著性映射和背景迭代产生背景种子区域.然后将其与分类网络生成的类激活映射图融合,获取有效的伪像素标签,用于训练语义分割模型.分割过程不再完全依赖最具判别性的类激活区域,而是通过图像显著性背景特征与类激活响应信息相互补充,这样可提供更精确的像素标签,提升分割网络的性能.在PASCAL VOC 2012数据集上的实验验证文中方法的有效性,同时分割性能较优. 相似文献
7.
近年来,随着深度学习进入计算机视觉领域,各种深度学习图像语义分割方法相继出现,其中全监督学习方法的分割效果显著超过弱监督学习方法.将全监督学习的图像语义分割方法分为五类,并对各类中最具有代表性的方法进行详细分析,重点阐述各种方法核心部分的实现过程.对语义分割领域中的主流数据集进行归纳总结,介绍了性能算法指标,并在主流数... 相似文献
8.
深度卷积神经网络使用像素级标注,在图像语义分割任务中取得了优异的分割性能.然而,获取像素级标注是一项耗时并且代价高的工作.为了解决这个问题,提出一种基于图像级标注的弱监督图像语义分割方法.该方法致力于使用图像级标注获取有效的伪像素标注来优化分割网络的参数.该方法分为3个步骤:(1)首先,基于分类与分割共享的网络结构,通过空间类别得分(图像二维空间上像素点的类别得分)对网络特征层求导,获取具有类别信息的注意力图;(2)采用逐次擦除法产生显著图,用于补充注意力图中缺失的对象位置信息;(3)融合注意力图与显著图来生成伪像素标注并训练分割网络.在PASCALVOC2012分割数据集上的一系列对比实验,证明了该方法的有效性及其优秀的分割性能. 相似文献
9.
随着弱监督学习被应用于遥感图像语义分割,大大降低了模型训练的数据成本。然而,由于监督信息不足,类激活图难以准确激活出遥感图像中不同尺度大小的目标,这使得基于类激活图获得的伪分割掩码边缘粗糙,从而导致最终的分割结果不准确。此外,大部分的弱监督语义分割方法都是基于可视化的两阶段方法,模型复杂繁琐。针对上述问题,设计了一种基于边缘增强的端到端弱监督语义分割网络。在特征空间边缘增强模块中,以自监督方式引导网络学习遥感图像中尺寸不一的目标,并且,细化伪分割掩码的边缘;在输出空间边缘增强模块中,通过端到端训练提升分割精度,同时降低模型训练的繁琐度。在ISPRS 2D数据集上的实验结果表明,该方法在仅使用图像级标签的情况下MIoU分别为57.72%和59.45%,与其他方法相比,效果较好。 相似文献
10.
11.
目的 传统图像语义分割需要的像素级标注数据难以大量获取,图像语义分割的弱监督学习是当前的重要研究方向。弱监督学习是指使用弱标注样本完成监督学习,弱标注比像素级标注的标注速度快、标注方式简单,包括散点、边界框、涂鸦等标注方式。方法 针对现有方法对多层特征利用不充分的问题,提出了一种基于动态掩膜生成的弱监督语义分割方法。该方法以边界框作为初始前景分割轮廓,使用迭代方式通过卷积神经网络(convolutional neural network,CNN) 多层特征获取前景目标的边缘信息,根据边缘信息生成掩膜。迭代的过程中首先使用高层特征对前景目标的大体形状和位置做出估计,得到粗略的物体分割掩膜。然后根据已获得的粗略掩膜,逐层使用CNN 特征对掩膜进行更新。结果 在Pascal VOC(visual object classes) 2012 数据集上取得了78.06% 的分割精度,相比于边界框监督、弱—半监督、掩膜排序和实例剪切方法,分别提高了14.71%、4.04%、3.10% 和0.92%。结论 该方法能够利用高层语义特征,减少分割掩膜中语义级别的错误,同时使用底层特征对掩膜进行更新,可以提高分割边缘的准确性。 相似文献
12.
由于弱监督语义分割任务中种子区域的随机生长机制,导致弱监督语义分割网络经常出现错分割和漏分割的问题。针对上述问题,提出一种基于边界辅助的弱监督语义分割网络。该网络利用边界信息和语义信息,为种子区域的生长提供参考,使种子区域可以自然生长至目标边界,并在目标被遮挡或重叠时正确区分目标类别,生成可以覆盖更完整目标的伪像素掩码。以此伪像素掩码作为监督信息训练分割网络,可以改善弱监督语义分割网络由于伪像素掩码无法准确覆盖目标区域导致的错分割和漏分割问题,提升弱监督语义分割网络精度。在通用数据集PASCAL VOC 2012验证集和测试集上对该网络进行评估,mIoU分别达到71.7%和73.2%。实验结果表明,其网络性能优于当前大多数图像级弱监督语义分割方法。 相似文献
13.
目的 深度语义分割网络的优良性能高度依赖于大规模和高质量的像素级标签数据。在现实任务中,收集大规模、高质量的像素级水体标签数据将耗费大量人力物力。为了减少标注工作量,本文提出使用已有的公开水体覆盖产品来创建遥感影像对应的水体标签,然而已有的公开水体覆盖产品的空间分辨率低且存在一定错误。对此,提出采用弱监督深度学习方法训练深度语义分割网络。方法 在训练阶段,将原始数据集划分为多个互不重叠的子数据集,分别训练深度语义分割网络,并将训练得到的多个深度语义分割网络协同更新标签,然后利用更新后的标签重复前述过程,重新训练深度语义分割网络,多次迭代后可以获得好的深度语义分割网络。在测试阶段,多源遥感影像经多个代表不同视角的深度语义分割网络分别预测,然后投票产生最后的水体检测结果。结果 为了验证本文方法的有效性,基于原始多源遥感影像数据创建了一个面向水体检测的多源遥感影像数据集,并与基于传统的水体指数阈值分割法和基于低质量水体标签直接学习的深度语义分割网络进行比较,交并比(intersection-over-union,IoU)分别提升了5.5%和7.2%。结论 实验结果表明,本文方法具有收敛性,并且光学影像和合成孔径雷达(synthetic aperture radar,SAR)影像的融合有助于提高水体检测性能。在使用分辨率低、噪声多的水体标签进行训练的情况下,训练所得多视角模型的水体检测精度明显优于基于传统的水体指数阈值分割法和基于低质量水体标签直接学习的深度语义分割网络。 相似文献
14.
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展。语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解。目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标。本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标。然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union)。最后,指出了图像语义分割领域未来可能的热点方向。 相似文献
15.
大多数弱监督实例分割方法利用类激活图生成的伪标签以及多阶段的训练策略,在实例分割上取得了不错的性能,但这些方法在检出物体完整性上仍然面临许多挑战。针对上述问题,提出了一种基于伪标签自细化的弱监督实例分割方法(pseudo-label self-refinement, PLSR),即在训练过程不断地利用网络自身的结果筛选、聚合候选区域得到各分支的伪标签,保障并逐步提升伪标签的质量,最终提高实例分割的性能。在Pascal VOC2012和MS-COCO数据集上进行实验,与现有的弱监督实例分割方法进行对比,AP50分别提高了1.6%和1.9%。实验结果表明,伪标签自细化方法能够有效利用候选区域的形状信息以及网络自身的语义信息提升伪标签的质量并取得了良好的分割效果,最终提高了弱监督实例分割的性能。 相似文献
16.
语义分割作为计算机视觉领域的重要研究方向之一,应用十分广泛。其目的是根据预先定义好的类别对输入图像进行像素级别的分类。实时语义分割则在一般语义分割的基础上又增加了对速度的要求,广泛应用于如无人驾驶、医学图像分析、视频监控与航拍图像等领域。其要求分割方法不仅要取得较高的分割精度,且分割速度也要快。随着深度学习和神经网络的快速发展,实时语义分割也取得了一定的研究成果。本文在前人已有工作的基础上对基于深度学习的实时语义分割算法进行系统的归纳总结,包括基于Transformer和剪枝的方法等,全面介绍实时语义分割方法在各领域中的应用。首先介绍实时语义分割的概念,再根据标签的数量和质量,将现有的基于深度学习的实时语义分割方法分为强监督学习、弱监督学习和无监督学习3个类别。在分类的基础上,结合各个类别中最具有代表性的方法,对其优缺点展开分析,并从多个角度进行比较。随后介绍目前实时语义分割常用的数据集和评价指标,并对比分析各算法在各数据集上的实验效果,阐述现阶段实时语义分割的应用场景。最后,讨论了基于深度学习的实时语义分割存在的挑战,并对实时语义分割未来值得研究的方向进行展望,为研究者们解决存在的问题提供便利。 相似文献
17.
目的 现有图像级标注的弱监督分割方法大多利用卷积神经网络获取伪标签,其覆盖的目标区域往往过小。基于Transformer的方法通常采用自注意力对类激活图进行扩张,然而受其深层注意力不准确性的影响,优化之后得到的伪标签中背景噪声比较多。为了利用该两类特征提取网络的优点,同时结合Transformer不同层级的注意力特性,构建了一种结合卷积特征和Transformer特征的自注意力融合调制网络进行弱监督语义分割。方法 采用卷积增强的Transformer (Conformer)作为特征提取网络,其能够对图像进行更加全面的编码,得到初始的类激活图。设计了一种自注意力层级自适应融合模块,根据自注意力值和层级重要性生成融合权重,融合之后的自注意力能够较好地抑制背景噪声。提出了一种自注意力调制模块,利用像素对之间的注意力关系,设计调制函数,增大前景像素的激活响应。使用调制后的注意力对初始类激活图进行优化,使其覆盖较多的目标区域,同时有效抑制背景噪声。结果 在最常用的PASCAL VOC 2012(pattern analysis,statistical modeling and computational learning visual object classes 2012)数据集和COCO 2014 (common objectes in context 2014)数据集上利用获得的伪标签进行分割网络的训练,在对比实验中本文算法均取得最优结果,在PASCAL VOC验证集上,平均交并比(mean intersection over union,mIoU)达到了70.2%,测试集上mIoU值为70.5%,相比对比算法中最优的Transformer模型,其性能在验证集和测试集上均提升了0.9%,相比于卷积神经网络最优方法,验证集上mIoU提升了0.7%,测试集上mIoU值提升了0.8%。在COCO 2014验证集上结果为40.1%,与对比算法中最优方法相比分割精度提高了0.5%。结论 本文提出的弱监督语义分割模型,结合了卷积神经网络和Transformer的优点,通过对Transformer自注意力进行自适应融合调制,得到了图像级标签下目前最优的语义分割结果,该方法可应用于三维重建、机器人场景理解等应用领域。此外,所构建的自注意力自适应融合模块和自注意力调制模块均可嵌入到Transformer结构中,为具体视觉任务获取更鲁棒、更具鉴别性的特征。 相似文献
18.
目的 计算机辅助技术以及显微病理图像处理技术给病理诊断带来了极大的便利。病理图像分割是常用的技术手段,可用于划分病灶和背景组织。开发高精度的分割算法,需要大量精准标注的数字病理图像,但是标注过程耗时费力,具有精准标注的病理图像稀少。而且,病理图像非常复杂,对病理组织分割算法的鲁棒性和泛化性要求极高。因此,本文提出一种基于图网络的病理图像分割框架。方法 该框架有全监督图网络(full supervised graph network,FSGNet)和弱监督图网络(weakly supervised graph network,WSGNet)两种模式,以适应不同标注量的数据集以及多种应用场景的精度需求。通过图网络学习病理组织的不规则形态,FSGNet能达到较高的分割精度;WSGNet采用超像素级推理,仅需要稀疏点标注就能分割病理组织。结果 本文在两个公开数据集GlaS(Gland Segmentation Challenge Dataset)(测试集分为A部分和B部分)、CRAG(colorectal adenocarcinoma gland)和一个私有数据集LUSC(lung squam... 相似文献
19.
针对深度学习中道路图像语义分割模型参数量巨大以及计算复杂,不适合于部署在移动端进行实时分割的问题,提出了一种使用深度可分离卷积构建的轻量级对称U型编码器-解码器式的图像语义分割网络MUNet.首先设计出U型编码器-解码器式网络;其次,在卷积块之间设计稀疏短连接;最后,引入了注意力机制与组归一化(GN)方法,从而在减少模... 相似文献