首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
上覆高位硬厚关键层下开采,采动应力会异常集中。采用数值模拟的方法,研究了上覆硬厚关键层条件下采动应力演化规律,并分析了开采环境对采动应力的影响。研究表明:随工作面回采距离不断增加,工作面前方支承压力不断增长,但增速逐渐放缓,破断后工作面支承压力迅速降低。工作面边界条件和硬厚关键层厚度对采动应力的影响作用较为明显,表现为随相邻采空区数目的增加,破断前应力峰值逐渐增加,破断后应力逐渐降低;随硬厚关键层厚度的增加,工作面前方支承压力峰值逐渐减小,破断后支承压力峰值降低幅度逐渐增加。研究结果可为高位硬厚岩层下开采时冲击地压的预测与防治工作提供一定的理论基础,对于保证工作面的安全生产具有一定的指导意义。  相似文献   

2.
高位硬厚关键层下开采弹性能异常集中,采用数值模拟的方法研究了上覆硬厚关键层条件下弹性能分布特征,并分析了硬厚岩层不同厚度下弹性能分布特征。研究表明:受硬厚岩层的影响,工作面在开采过程中,煤壁前方以及煤壁前方硬厚岩层底部煤岩体处于高能量状态,易发生高能量微震事件;硬厚岩层破断过程中,释放大量的能量,造成煤岩体积聚的能量突然增大;在动力扰动作用下,造成煤岩体强烈震动,容易诱发矿震、冲击地压、压架、煤与瓦斯突出、离层水等重大动力灾害。随着硬厚岩层厚度的增加,破断前后煤壁前方的能量集中程度逐渐减小,硬厚岩层底部煤岩体能量集中范围增加。  相似文献   

3.
针对工作面上覆巨厚坚硬岩浆岩条件,运用相似模拟试验和数值模拟方法,分别研究了硬厚岩层下采场覆岩运动和采动应力演化规律。研究结果表明,工作面上覆岩浆岩时,覆岩破断的关键阶段分别为直接顶破断、基本顶初次破断、基本顸周期破断、岩浆岩初次破断和岩浆岩周期破断(裂隙沟通地表);硬厚岩浆岩破断前,随着工作面的不断推进,煤体支承压力不断增加;硬厚岩浆岩破断后,采场支承压力要小于破断前。  相似文献   

4.
矿震是由矿山开采引起的非天然地震活动,鄂尔多斯矿区侏罗纪煤层上方常见白垩系巨厚层状砂岩组,巨厚砂岩组破断、滑移容易诱发巨厚覆岩型矿震,研究揭示高位巨厚覆岩的内部活动演化规律与动力响应特征是巨厚覆岩型矿震灾害防控的基础。笔者基于符拉索夫厚板理论,结合地面探测孔、地表沉降以及微震监测技术,研究了鄂尔多斯某矿综放开采巨厚覆岩结构演化规律及覆岩内部活动特征,揭示了高位覆岩运动诱发矿震机制。结果表明,综放实体煤回采阶段,采空区面积较小,低位顶板垮落较为迅速,顶板破断角64°~72°,高位巨厚覆岩结构无明显裂隙产生,地表下沉量较小;邻空回采阶段,顶板破断高度向巨厚覆岩层扩展,巨厚覆岩层产生裂隙,巨厚覆岩下顶板破裂角有所增加,并且地表沉降量快速增加呈台阶式下沉。白垩系巨厚砂岩层厚较大、强度较高,推导得出邻空回采阶段工作面推进约324.3 m时,巨厚覆岩结构具备发生初次破断的条件,开始出现强矿震事件;并且其周期破断步距为83.7 m。巨厚覆岩结构破断触发矿震机制为:随采空区面积增加,顶板破裂高度逐渐扩展至高位巨厚砂岩层,该巨厚砂岩层发生竖“O-X”型初次破断、滑移以及周期性破断易诱发强矿震事件。研究结...  相似文献   

5.
针对工作面回采过程中及收尾后大巷难以保持稳定的问题,为了改变传统卸压方式在卸压范围、卸压时间、卸压效果等方面存在的不足,提出利用定向水平钻孔水力压裂技术进行卸压,采用理论分析和数值计算相结合的方式分析了大巷高应力产生原因,揭示了定向水平钻孔水力压裂对于工作面高支承压力转移作用机理,结果表明:工作面末采期顶板的断裂、旋转、运移、垮落等剧烈活动是造成采区大巷围岩应力集聚的主要原因;在工作面终采线实施定向水平钻孔水力压裂能够消除工作面停采后顶板破断而产生的动压能量,同时能够使得垮落带岩层及时破断冒落充填采空区,改变悬臂结构,进而降低护巷煤柱应力,现场应用取得了良好的效果。  相似文献   

6.
为了进一步研究采场上覆岩层的移动规律,对影响关键层上载荷分布的因素进行分析.采用FLAC如软件模拟了不同的软岩岩层厚度、刚度和水平应力对关键层上载荷峰值的影响.通过模拟,发现关键层上覆软岩岩层的厚度、层刚度和水平应力对关键层的载荷峰值都有影响,且不同的水平应力在关键层破断前后会产生不同的影响.在初次来压前,水平应力加速了采空区的上方关键层的破断,但延缓了煤壁前方关键层的破断.初次来压后对关键层的破断影响很小.通过此次研究可以对关键层的破断以及采场的周期来压进行预测,对于采场覆岩的控制具有一定的指导意义.  相似文献   

7.
矿震是深部矿井开采必然出现的动力现象,针对鄂尔多斯矿区白垩系巨厚覆岩邻空采动强矿震频发的现状,采用地面离层探测、地表岩移监测等技术,结合Reissner厚板理论与相对矩张量反演方法,分析了工作面邻空采动下白垩系巨厚覆岩破断运移特征,研究了工作面实体煤阶段向邻空回采阶段过渡区域频发矿震震源破裂模式的演化规律,揭示了白垩系巨厚覆岩深部煤层邻空采动强矿震孕育发生机理。结果表明:综放工作面实体煤回采阶段,白垩系巨厚覆岩无明显裂隙产生,地表沉降稳定,沉降量最大为0.23 m;邻空回采阶段,裂隙发育高度最大至煤层上方444.8 m处白垩系巨厚覆岩,强矿震震源处地表总是最先达到最大沉降,强矿震发生前地表最大沉降量快速增加,较1个月前监测最大沉降量增大超60%,表明白垩系巨厚覆岩破断运动为强矿震动力源,强矿震扰动作用下,巨厚覆岩失稳引起地表再次快速沉降。白垩系巨厚覆岩初次破断步距为307.7 m,与工作面实际推进度基本吻合,佐证了强矿震由白垩系巨厚覆岩初次破断诱发;巨厚覆岩破断厚度增大,其初次破断步距增幅逐渐变缓;工作面面长增大,巨厚覆岩初次破断步距线性增长,巨厚覆岩初次破断形式由横“O-X”形转变为...  相似文献   

8.
针对多关键层结构下煤厚复杂工作面覆岩移动及围岩应力问题,采用RFPA-Strata数值模拟方法研究了多关键层结构下不同采厚关键层破断特征及不同关键层破断前后支承应力响应特征。结果表明:(1)采高小于2.5 m时仅低位关键层破断且能够形成稳定的砌体梁结构,此时低位关键层能够承载自身及其上方至中位关键层下方岩层重量,煤体仅需承载低位关键层下方软岩重量及附加载荷,煤岩体承载力较好,超前支承应力峰值随采高增加逐渐增大。(2)采高大于3 m时中位、低位关键层均发生破断,中位关键层破断后形成砌体梁结构,此时中位关键层能够承载自身及其上方至高位关键层下方软岩重量;低位关键层破断后其断裂的岩块未能与前方未完全破断的岩层铰接,低位关键层为悬臂梁结构,此时煤体需承载煤层上方至中位关键层下方岩层重量及附加载荷,超前段煤岩体发生大量剪切破坏导致煤岩体承载力降低,超前支承应力峰值随采高增加逐渐减小。(3)关键层运动影响支承应力分布特征,关键层完全破断后低位关键层下沉位移量减小,超前支承应力峰值大小及其距煤壁的距离随关键层破断均减小。(4)采高大于3 m时,低位关键层破断后主要影响超前支承应力峰值点距煤壁距离,峰...  相似文献   

9.
针对工作面上覆巨厚坚硬岩浆岩条件,采用相似模拟的方法,研究了不同配比条件下岩浆岩的破断运移规律,对岩浆岩破断后诱发动力灾害进行了分析。研究表明:巨厚坚硬岩浆岩的配比不同岩浆岩的破断运移规律不同,当岩浆岩配比号为337时岩浆岩的初次破断是非全厚破断,破断后的岩块形状极不规则;当岩浆岩配比号为737时,坚硬巨厚岩浆岩初次破断为全厚破断,破断后的岩块形状成拱形;坚硬巨厚岩浆岩在失稳时释放大量的能量,能量传递到工作面,会对工作面产生冲击,导致工作面发生冲击地压。  相似文献   

10.
为了深入探究采场上覆巨厚复合关键层的移动变形规律,以义马矿区的地质条件为背景,利用计算机软件(KSPB)判别覆岩关键层位置;根据高位关键层与工作面推进长度的空间位置关系,结合符拉索夫厚板理论对其进行力学分析与计算;搭建三维立体模型(3.6 m×2.0 m×2.0 m)进行物理模拟试验,采用压力传感器测试采场支承压力,分布式光纤传感技术(BOTDA)监测覆岩动态变形过程,多点位移计测试岩层内部位移,并将3种测试结果进行综合对比分析。结果表明:复合关键层破断距理论计算值与物理模型试验测量值基本一致,传感光纤频移峰值在数值、位置、形状上的变化可反映覆岩关键层弯曲变形、破断、回转的动态演化过程;当工作面1推进至960 m时,40 m厚亚关键层一细砂岩(煤层上方112 m位置)中的传感光纤V_(11)出现了4次频移峰值,分别为438.98,313.85,304.27和288.97 MHz,发生了4次破断,初次破断距为368 m,周期破断距为186 m,处于垮落带;160 m厚亚关键层二下组巨厚砾岩(煤层上方225 m位置)中的传感光纤V_(12)出现了1次频移峰值,为165.94 MHz,仅发生1次破断,初次破断距为736 m,但结构未失稳,处于裂隙带;250 m厚主关键层上组巨厚砾岩(煤层上方386 m位置)中的传感光纤V_(13)最大频移峰值为38.61 MHz,远远小于光纤V_(11)和V_(12)的频移峰值,仅发生微小弯曲变形,处于弯曲下沉带。工作面2覆岩变形规律与工作面1趋势基本一致,但关键层在工作面1的破断距离比工作面2大。随开采范围增大,巨厚复合关键层自下而上逐步发生破断,会出现同步和非同步破断现象,增大了采场围岩失稳的不确定及控制难度,易诱发矿井动力灾害。  相似文献   

11.
依据印度东部煤田有限公司(ECL)Jhanjra煤田R-Ⅵ煤层2号钻孔地质资料和开采工艺参数等数据,运用相似材料模拟试验对含厚顶板的上覆岩层在工作面推进过程中的矿压规律进行分析。研究表明:厚顶初次来压步距长,破断时动压现象非常明显;厚顶的破断对上覆岩层的破断起到控制作用,破断后,上覆岩层与厚顶保持同步协调运动。随着工作面向前推进,在工作面前方煤壁形成支承压应力增高区;在采场上方靠近煤层的顶板中,形成拉应力增高区,导致顶板产生拉伸破坏;工作面前后方剪应力呈中心对称分布,并在前后方煤壁上端形成压剪破坏。  相似文献   

12.
厚且坚硬关键岩层的变形与破断影响着上覆岩层的运动,针对传统"梁"或"薄板"理论在分析厚且坚硬关键岩层受力与破断适应性差的问题,基于中厚板理论对存在厚且坚硬关键岩层的孤岛工作面在初次来压、周期来压时关键岩层的位移及应力分布情况进行了研究,讨论了关键岩层厚度对于切应力分布的影响,揭示了关键岩层的受力与破断特征,提出了关键岩层破断模式判据。结果表明:在覆岩条件一定的条件下,关键岩层厚度越小,越容易发生拉伸破断,随着关键岩层厚度的逐渐增大,破断形式逐渐转变为拉剪混合破断和剪切破断;关键岩层厚度较小时,在破坏时多发生的是拉伸破断,破断后的关键岩层沿支点旋转形成绞接结构,不会对工作面造成太大的载荷;坚硬厚关键岩层则多发生剪切破断,对工作面造成冲击,易发生剪切破断的坚硬厚关键岩层破断位置与传统薄板理论确定的破断位置不同;坚硬厚关键岩层内分布的切应力随着岩层厚度的增加而增大,来压前后,关键岩层内部的应变能峰值由中部向工作面两端转移;坚硬厚关键岩层内部的切应力分布更为集中,将切应力集中分布的这部分区域作为围岩控制的重点,实现工作面灾害分区域、分级防控。  相似文献   

13.
采煤工作面上覆高位坚硬岩层的预裂可减弱其储能条件,进而控制矿震事件的能量。为探测埋藏深度超过500 m的采煤工作面高位岩层水力压裂裂隙的空间展布情况,采用三分量地震频率谐振技术进行裂隙空间展布探测。设计了6条频率谐振检波器布置探测线,在水力压裂作业前后分别进行探测,对获取的探测器波形数据进行解译。数据解译结果表明:(1)水力压裂裂隙空间展布呈类椭球体形,其长轴与地层最大主应力方向基本一致;(2)水力压裂范围在水平方向上最大压裂半径可达50 m以上,垂直方向上压裂高度可达30~50 m;(3)水力压裂所形成的应力降低区域远大于裂纹扩展区域;(4)水力压裂裂纹扩展受岩层赋存变化影响较大。研究表明,三分量地震频率谐振技术能够有效探测深部岩层水力压裂裂隙空间展布,是一种适用的水力压裂范围探测技术手段。  相似文献   

14.
针对深井厚煤层综放工作面沿空巷道围岩控制困难的问题,以新河煤矿5302工作面沿空巷道为研究对象,采用理论分析、现场实测、微震监测等手段研究了巷道变形和顶板运动的动态响应关系,重构了工作面顶板破断过程,分析了回采巷道变形特征,建立了回采巷道受力模型,确立了顶板破断与巷道变形的对应关系,得出以下主要结论:5302工作面顶板破断过程存在“大小周期”现象,顶板最大破断高度为70?m,高位岩层( 中位基本顶和高位基本顶 )的破断是沿空巷道变形加剧的主要原因;在顶板初次破断周期内,巷道围岩变形随着顶板破断高度的增加而持续增加,在周期破断过程中,巷道围岩变形不会持续增加,而是在一个范围内周期性地上下波动;高位岩层破断致使两帮移近量和顶板下沉量达到峰值,但两帮和顶板变形峰值响应的时机不同,两帮移近量峰值显现滞后于高位岩层破断位置,顶板下沉量峰值显现超前于高位岩层破断位置。研究揭示了深井厚煤层沿空巷道围岩变形与顶板岩层运动间的对应关 系,可为其围岩控制设计提供参考。  相似文献   

15.
以鲍店煤矿10采区为背景,利用UDEC数值软件,研究高位硬厚岩层下近距离煤层开采超前支承压力及硬厚岩层底部应力变化规律。结果表明:上煤层开采时,超前支承压力及影响范围在硬厚岩层破断前达到最大值,硬厚岩层破断后,超前支承压力峰值呈周期性变化,变化范围较小,在硬厚岩层底部离层空间两端出现应力集中现象。下煤层开采时,超前支承压力集中程度高于上煤层工作面,在应力峰值外侧未趋于稳定,出现波浪形变化,硬厚岩层底部未形成显著的应力集中现象。  相似文献   

16.
为了研究上覆硬厚岩层对工作面采动应力的影响作用,针对田陈煤矿7112工作面地质条件,采用数值模拟方法,研究了厚硬关键层不同赋存条件下采动应力变异特征。研究表明:随工作面的持续推进,工作面前方支承压力不断增长,但增速逐渐放缓,破断后工作面支承压力迅速降低;随厚硬关键层厚度、赋存高度的增加,厚硬关键层初次破断前工作面前方支承压力峰值逐渐减小。采用理论分析方法,计算出工作面上覆关键层破断步距,根据研究结果,精细划分了硬厚岩层影响下的7112工作面冲击危险区段,通过实施密集钻孔卸压,成功控制了冲击风险,实现7112工作面的安全生产,为该采区7112周边工作面提供了可靠技术参数。  相似文献   

17.
掌握高位厚硬岩层破断机理及破断响应规律对于煤矿动力灾害防控具有重要作用。以营盘壕煤矿2201、2202工作面为背景,建立高位厚硬岩层破断的力学模型,得到高位厚硬岩层破断力学公式。将营盘壕煤矿各项地质数据带入力学模型、公式计算,得到2201工作面开采时高位厚硬岩层不破断;2202工作面开采时,高位厚硬岩层预计在双工作面见方范围内发生破断,并详细分析高位厚硬岩层破断全过程。通过对开采营盘壕煤矿2202工作面期间的大能量事件进行监测,验证了2202工作面开采至双工作面见方时,高位厚硬岩层发生破断并释放大量能量。本文研究成果为研究类似地质条件下高位厚硬岩层破断机理及规律响应提供了科学指导。  相似文献   

18.
水力压裂技术在煤矿坚硬、完整顶板岩层弱化及高应力巷道卸压方面得到越来越广泛的应用。以陕西曹家滩煤矿特厚煤层综放开采工作面、特厚稳定顶板岩层为工程背景,开展了顶板岩层地质力学测试、可压性试验,水力裂缝扩展理论分析及三维数值模拟,提出井下工作面定向钻孔区域水力压裂顶板层位、压裂钻孔布置与参数确定方法及压裂工艺。在井下进行了工业性试验和系统的地面微震实时监测,获得了顶板水力压裂裂缝空间展布特征。同时,进行了液压支架工作阻力,工作面周期来压步距及持续距离,来压动载系数及顶板岩层破断能量监测与分析,综合评价了水力压裂效果。初步建立了集压裂层位确定与参数设计,井下定向钻孔压裂工艺与装备,水力裂缝空间展布监测与压裂效果综合评价为一体的煤矿井下定向钻孔水力压裂成套技术。井下试验结果表明:在曹家滩煤矿井下地应力状态下(最小主应力为垂直应力),水力裂缝以水平裂缝为主,沿钻孔两侧扩展平均距离为80 m左右,有效弱化了工作面范围内上覆坚硬、完整顶板,实现了区域顶板改造。压裂区域工作面强矿压显现显著减弱,确保了工作面安全生产。最后,分析了水力压裂存在的问题,展望了技术发展方向。  相似文献   

19.
针对神东补连塔煤矿顶板岩层厚度较大,强度不高,整体性好的基本特征,选取补连塔煤矿22309工作面作为水力压裂试验点,研究水力压裂对顶板岩层的弱化及初次放顶垮落的作用。基于空心包体应变测量技术,实时监测水力压裂工作面上方顶板内部应力状态,分析得到水力压裂工作面顶板压力的变化规律。现场监测表明,水力压裂法降低了顶板来压强度,也减弱了工作面超前支承压力的影响,水力压裂能使顶板及时垮落,其分层分次的特点减小了对采煤工作面的冲击,保证工作面安全回采,是一种有效而可行的采煤工作面初次放顶技术。  相似文献   

20.
针对沿空掘巷及本段工作面采掘扰动对高应力厚煤层护巷煤柱的稳定性影响问题,以陕西金源招贤煤矿1305工作面为工程背景,通过理论分析、数值模拟及现场实践的方法,分析了采掘过程中煤柱内应力演化及基本顶的破断规律,给出了基本顶初次及二次破断后的力学模型,分析了采掘过程中工作面前40 m范围内护巷煤柱的应力和弹塑性区分布规律。结果表明:工作面采掘致使基本顶破断形成的三角块结构是造成煤柱失稳的重要因素;风巷掘进期间,应力集中区与峰值应力主要分布在采空区侧煤柱内,巷道侧煤柱基本稳定;1305工作面回采期间,工作面前方20 m范围内煤柱应力叠加现象明显且塑性区宽度增加幅度较大,在30 m和40 m处煤柱应力分布规律与掘巷期间相似且塑性区宽度增加较小。综上表明,工作面采动对前方20 m煤柱的稳定性影响严重。现场实践证明合理的支护参数设计能有效控制巷道围岩的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号