首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of this study is to evaluate the performance of a centralized open-loop ground-water heat pump (GWHP) system for climate conditioning in Beijing with a cold climate in China. Thus, a long-time test was conducted on a running GWHP system for the heating season from December 2011 to March 2012. The analysis of the testing data indicates that the average heat-pump coefficient of performance (COP) and the COP of the system (COPs) are 4.27 and 2.59. The low value and large fluctuation in the range of COP are found to be caused by the heat transfixion in the aquifer and the bypass in the circulation loop. Therefore, some suggestions are proposed to improve the performance for GWHPs in the cold climate region in China.  相似文献   

2.
The goal of the present study is to validate the cooling performance of a ground-coupled heat pump system established in Fırat University, Elazığ (38.41°N, 39.14°E), Turkey. The cooling load of the test room was 3.1 kW at design conditions. The experimental results were obtained from June to September in cooling season of 2003. The ground heat exchanger was used, and it was buried with in 2 m depth trench. The average cooling performance coefficient of the system (COPoverall) was obtained to be 2.01. The results obtained from experimental measurement showed that these systems could be used safely, reliably and efficiently at the lowest possible cost for Elazığ, Turkey climatic conditions. Especially, the seasonal energy efficiency ratio (SEER) of this system is moderate at longer-term testing.  相似文献   

3.
In this paper, the effect of various system parameters on horizontal ground source compression refrigeration machine (CRM) performance is studied experimentally in Bursa, Turkey. A ground heat exchanger (GHE) system connected to CRM in a test room in the air conditioning and refrigeration laboratory of Uludag University has been designed and constructed. This system was tested for space cooling in August and September 2004 and performance tests were performed during this period. Overall, system mainly consists of the GHE (GHE–water circuit) and CRM (CRM–refrigerant circuit). Refrigerant is R134a. Hourly variations of inlet and outlet water temperatures, extracted heat from test room, rejected heat to ground, compression ratio, total power consumption, and coefficient of performance (COP) values for both whole system and only CRM are obtained. Thermal properties of soil are also estimated by using experimental data and theory. Cooling load of test room and rejected heat to ground, and all COP values are also presented. Finally, heat rejection rate to ground with respect to leaving water temperature from GHE is given. The COP of the overall system changes between 2 and 2.5, also CRM COP values are in the range of 3 and 3.86. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
A ternary mixture of R124/R142b/R600a, named HTR01, for moderately high temperature heat pumps, was developed. Tests of material compatibility and oil miscibility showed that the mixture could be used with a R22 compressor in an HTR01 heat-pump system. A 2.92 kW moderately high temperature water source heat pump system was set up with HTR01 as the refrigerant to study the system performance with HTR01. Then, a 300 kW moderately high temperature water source heat pump system was built with HTR01 as the refrigerant to test the performance with a geothermal hot water source. The test showed that the condenser outlet water temperature could reach and hold on about 90 °C with a high coefficient of performance.  相似文献   

6.
Christopher J. Wood  Hao Liu  Saffa B. Riffat   《Energy》2010,35(12):4932-4940
Novel methods are sought to provide greater efficiency of the installation of ground heat exchangers for GSHPs (ground source heat pumps) in domestic buildings. An economically viable option is to utilise concrete foundation piles as ground heat exchangers. The objective of this study is to investigate the operation of utilising a piled foundation structure as a ground heat exchanger. A test plot of 72 m2 (ground floor area) was produced with 21 × 10 m deep concrete piles, with a single U tube pipe in each. Ground heat was extracted by a heat pump with the heat loading being varied in line with the date and the average air temperature. Over the 2007/2008 heating season this study had investigated the temperature changes in the foundation piles and the surrounding ground in addition to the heat pump operational performance. The temperature changes observed in the region of the test plot were compared with variations naturally experienced in the ground due to the seasonal climatic influence. The SPF (seasonal performance factor) of the heat pump was 3.62 and the ground temperature at a distance of 5 m from the test plot was seen to be undisturbed by the heat extraction and followed the predicted seasonal variation.  相似文献   

7.
介绍了融合虚拟仪器技术的换热器综合性能测试系统的工作原理和软硬件组成。换热器综合性能测试系统主要由油-水换热系统和(水)乙二醇水溶液-水换热系统组成,适用于多股流体换热器的传热特性和流动阻力的综合性能测试。测试系统以LabVIEW软件为平台,由硬件设备和精密测试仪器组成,通过计算机调节控制现场各设备的运行状态,自动采集测试数据,对测试数据进行处理、显示并储存在数据文件中,同时还具有自动报错和实时联锁保护功能,保证了整套测试系统的安全稳定运行。在实验测试过程中能保证冷热两侧热平衡计算精度在[-5%,+5%]区间内。该系统可为新型换热器的科学研究、工程设计和工程应用提供可靠的数据依据和实验保障。  相似文献   

8.
针对烟气余热不能充分回收的问题,对能够充分回收烟气余热的新型热电联供系统中的烟气冷凝热回收设备进行试验研究,重点研究该工况下光滑管烟气冷凝设备的传热性能.研究结果表明,在该试验工况下,干式、冷凝段传热系数可达60 W/(m~2·K),冷凝段传热系数为90~100 W/(m~2·K),冷凝段传热系数约为干式段传热系数的1.5~1.7倍,并整理了该工况下的传热准则关系式,为该系统型式的推广应用提供设计与运行依据.  相似文献   

9.
In this study, a geothermal energy deicing system for bridge deck using a pile heat exchanger was developed, and the performance of this system was investigated under the conditions of snowfall. The structural response of the bridge deck during the deicing process was also analyzed. The slab temperature, air temperature, inlet and outlet circulating fluid temperature, and slab thermal strain were monitored during the test. The results show that the deicing system developed in this study was capable of accelerating the snow‐melting process even though no heat pump was employed in the deicing system. The deicing system was also suitable for anti‐icing in winter. In addition, the thermal effects of the deicing system on the structural response of the bridge deck could be ignored during the deicing process.  相似文献   

10.
Buildings represent nearly 40 percent of total energy use in the U.S. and about 50 percent of this energy is used for heating, ventilating, and cooling the space. Conventional heating and cooling systems are having a great impact on security of energy supply and greenhouse gas emissions. Unlike conventional approach, this paper investigates an innovative passive air conditioning system coupling earth-to-air heat exchangers (EAHEs) with solar collector enhanced solar chimneys. By simultaneously utilizing geothermal and solar energy, the system can achieve great energy savings within the building sector and reduce the peak electrical demand in the summer. Experiments were conducted in a test facility in summer to evaluate the performance of such a system. During the test period, the solar chimney drove up to 0.28 m3/s (1000 m3/h) outdoor air into the space. The EAHE provided a maximum 3308 W total cooling capacity during the day time. As a 100 percent outdoor air system, the coupled system maximum cooling capacity was 2582 W that almost covered the building design cooling load. The cooling capacities reached their peak during the day time when the solar radiation intensity was strong. The results show that the coupled system can maintain the indoor thermal environmental comfort conditions at a favorable range that complies with ASHRAE standard for thermal comfort. The findings in this research provide the foundation for design and application of the coupled system.  相似文献   

11.
对一种T型翅片内螺纹沸腾强化换热管进行换热性能实验研究,管外以制冷剂R134a为工质,管内以水为介质,在定热流密度(q=9 000 W/m2)与定水流速(v=1.5 m/s,v=2.6 m/s)的工况下得到一系列实验数据.利用Wilson图解法得到管内外的换热系数,并与理论光管计算值进行比较,得出T型翅片管管内外沸腾换...  相似文献   

12.
A modified three-dimensional finite difference model for the borehole ground heat exchangers of a ground-source heat pump (GSHP) system was developed which accounted for multiple ground layers with different thermal properties in the borefield at no groundwater flow. The present model was used to investigate the impact of ignoring ground layers in the thermal response test (TRT) analysis and the subsequent system simulation. It was found that the adoption of an effective ground thermal conductivity and an effective ground volumetric heat capacity for a multi-layer ground determined from a TRT analysis led to very little error in the simulated long term system performance under various ground compositions investigated. The maximum difference occurred for a 3 × 3 borefield in a dual-layer ground which measured 0.5 °C or 3.9% in the rise of the borefield fluid leaving temperature with a cooling-dominated loading profile for 10 years. With the same borefield and ground composition, a dynamic simulation of the complete GSHP system was performed using the TRNSYS simulation software. It was found that the overall system performance based on the present and the old models differed very little. It was concluded that the assumption of a homogeneous ground in a TRT analysis and subsequent system simulation was appropriate and impact of ignoring ground layers was small. A single-ground-layer model, including the analytical models, was sufficient even for a multi-layer ground. This could reduce the computation time significantly, especially when simulating a large borefield.  相似文献   

13.
对制冷剂R134a在水平强化换热管管内的凝结换热性能进行了实验研究。实验管为两种内微翅管,分别命名为A管和B管。实验件采用套管结构,强化内管外表面和外管内表面之间(管间)走乙二醇水溶液。实验过程中管内冷凝温度为51℃,管间乙二醇水溶液的流速为3.35 m/s,乙二醇水溶液的进口温度根据制冷剂的质量流速做相应调整,以保证试件出口制冷剂有一定的过冷度。实验结果表明:两种水平强化管的管内冷凝换热系数均随着制冷剂质量流速的增加而增大,在制冷剂质量流速从300 kg/(m2.s)增加到700kg/(m2.s)时,A管的管内冷凝换热系数比B管高1.87%到6.28%,而B管的制冷剂流动阻力比A管高9.56%到11.05%,A管的结构优于B管。  相似文献   

14.
Heat pump dryer is a complex system because of the interaction of heat and mass transfer of the working fluids. Since the system cannot be completely close, ambient conditions (temperature and humidity) influence the performance of the system. To investigate the performance of the heat pump dryer thoroughly, simulation models of heat pump dryer components have been developed. The finite-difference method was employed in the simulation to examine the state of the working fluids and heat and mass transfer. The simulation of each component can be used to construct different system configurations the results of which are reported in Part 2.  相似文献   

15.
A solar-assisted heat pump system (SAHPS) for hot-water production has been developed and compared for its experimental performance, under similar ambient conditions with a conventional thermosyphon solar system (CTSS) with a single direct tank. Both systems were monitored from 1993 to 1997 during summer and winter time periods. The performance of CTSS was seriously affected by weather conditions, whereas SAHPS could always operate with no significant variation and with a COP above 3·0. A comparison between the two systems proved the performance of the SAHPS to be better than that of CTSS under all climatic conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Heat pump dryer characteristics of four configurations, two open and two closed systems, are presented. The results are based on the simulation models developed in Part 1. Emphasis is given to the effects of ambient conditions, recirculating air ratio and evaporator bypass air ratio on the system performance. The criteria for evaluating the system performance are the specific moisture extraction rate (SMER), the moisture extraction rate (MER) and the coefficient of performance (COP). It was found that the ambient conditions and dryer efficiency play an important role in the system behaviour. Optimum performance achieved for one ambient condition cannot be assumed optimum for the others. The recirculating air ratio substantially affects the system performance while the evaporator bypass air ratio shows insignificant effect. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
焦载热部分气化燃煤联合循环系统性能分析   总被引:2,自引:1,他引:1       下载免费PDF全文
文中提出的一种新型燃煤联合循环发电技术,载热部分气化联合循环技术,经近几年的研究及运行实验,得到不断完善。最近,作为这种系统的改进型式--焦载热部分气化联合循环已被提出,其焦载热炉及气化炉部分已在清华电厂投建,并进行冷态调试。本文在载热循环基础上,通过改变煤成分等参数对焦载热系统进行分析,得出结论认为煤气质量及流率的影响对整个整合循环系统极为关键。  相似文献   

18.
Expanders employed recently in organic Rankine cycle (ORC)‐based systems suffer from key problems including excessive working fluid leakage, thermal losses, low isentropic efficiency and high cost. The majority of the units available in the market are for medium and large‐scale applications (>100 kW) with no commercial micro‐scale expanders available and applicable for ORC units for residential and building applications. Moreover, the majority of the studies conducted on ORC expanders employed HFC and HCFC working fluids which have high global warming potential leading to negative environmental impacts. In this study, a micro‐scale CHP system based on the ORC technology is theoretically and experimentally investigated to provide the thermal needs and part of the electrical demands for residential applications. An innovative design for a hybrid ORC‐based micro‐CHP system is proposed using a biomass boiler and a solar concentrator to run the CHP system providing more reliable and clean operation compared to conventional natural gas‐driven units. The micro‐CHP system employs a new type small‐scale scroll expander with a compact design, integrating the generator and the turbine in a single unit. A numerical model was developed using the Engineering Equation Solver (EES) software to simulate the thermodynamic behaviour of the ORC unit predicting the thermal and electrical performance of the overall CHP system. In addition, an experimental setup was built to test the whole ORC–CHP system performance under different conditions, and the effect of various operational parameters on the system performance has been presented using an environmentally friendly HFE7100 working fluid. The maximum electric power generated by the expander was in the range of 500 W at a pressure differential of about 4.5 bars. The attained expander isentropic efficiency was over 80% at its peak operating conditions with no fluid leakage observed. Being mass‐produced with low cost in the automotive industry along with the high isentropic efficiency and the leakage‐free performance, the proposed compact scroll expander represents a potential candidate to be used in the development of micro‐scale ORC–CHP units for building applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents the results of a numerical and experimental study for the performance of a test phase change material (PCM) chamber for passive solar applications. The numerical part of the study was based on a one-dimensional model for the phase change problem. The numerical treatment was based on a finite-difference technique and the results were compared with literature data and field measurements. The experimental test PCM chamber has been designed and developed at the campus of Central Greece University of Applied Sciences at Psachna, Evia. The PCM used in the numerical and experimental tests was GR 27 of Rubitherm. Results show that the PCM does not operate as an insulation material but as a mean of temperature stabilisation in the indoor environment during its phase change period. Regarding the application of the numerical model to simulate the performance of the experimental PCM chamber, results show good qualitative and quantitative agreement.  相似文献   

20.
设计了一套复合式土壤源热泵性能实验台,采用冷却塔作辅助冷源、太阳能热水器作辅助热源,能够实现冬季供暖、夏季供冷、一年四季提供60~80℃生活热水的功能。给出了系统中热泵机组、空调末端设备、冷却塔、水泵、太阳能热水器等主要部件的选型计算方法,经搭建好的土壤源热泵性能实验台运行测试,制冷和制热效果良好,同时也解决了土壤热平衡问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号