首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于深度学习的目标检测算法综述   总被引:2,自引:0,他引:2  
传统目标检测算法大多基于滑动窗口和人工特征提取,存在计算复杂度高和在复杂场景下鲁棒性差的缺点。近年来,研究人员将深度学习技术应用于目标检测领域,显著提高了算法性能。相比传统算法,基于深度学习的目标检测算法具有速度快、准确性高和在复杂条件下鲁棒性强的优点。从评价指标、公开数据集、传统算法框架等方面对目标检测任务进行阐述,按照是否存在显式的区域建议和是否定义先验锚框两种分类标准,对现有基于深度学习的目标检测算法进行分类,分别介绍算法的演进路线并总结算法机制、优势、局限性及适用场景。在此基础上,分析对比代表性算法在公开数据集中的表现,并对基于深度学习的目标检测的未来研究方向进行展望。  相似文献   

2.
目标检测是高级视觉研究领域的重要前提,是计算机视觉研究的核心问题.深度学习拥有强大的自学习能力,将其运用至目标检测领域能够在一定程度上弥补了传统检测方法的不足.首先介绍了传统目标检测方法面临的困境;然后对两阶段深度学习算法和单阶段深度学习算法分别进行介绍;最后对基于深度学习的目标检测算法的发展进行总结,并对未来前景进行...  相似文献   

3.
深度卷积神经网络的目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。  相似文献   

4.
首先,介绍了现阶段目标检测的发展并进行分类;然后阐述了YOLO系列算法,特别是YOLO中重要的核心机制,如损失函数、网络结构、优化策略、k-means聚类和批归一化;其次,对YOLO的应用场景进行介绍,如应用于行人检测、工业以及医学方面;最后,总结YOLO系列算法的特点以及未来改进方向。本文对研究基于深度学习的目标检测系统具有一定的指导意义。  相似文献   

5.
随着深度卷积神经网络优异的特征提取能力被发掘, 目标检测的进程开始以一种势不可挡的姿态向前推进, 同时, 和深度学习结合的目标检测技术取得了显著的成果, 在自动驾驶、智能化交通系统、无人机场景、军事目标检测和医学导航等现实场景中得到了广泛的应用. 本文回顾了传统目标检测算法的缺点, 介绍了常用的检测数据集以及性能评估指标, 综述了基于深度学习的目标检测经典算法, 阐述了当前目标检测的以及存在的困难与挑战, 对目标检测的未来可行的研究方向进行了展望.  相似文献   

6.
计算机网络和人工智能快速发展的时代,人身安全、社会安全以及国家安全越来越受到大众的关注。目标检测在视频处理中发挥至关重要的作用。传统目标检测算法已难以满足目标检测中数据处理效率、性能、智能化等方面的要求。当前流行的深度学习广泛应用于人工智能和目标检测与跟踪。基于此,介绍SPPNet、R-CNN等一系列基于区域提案(Region Proposal)的目标检测方法和YOLO、SSD等基于回归的目标检测方法及优缺点,总结与展望目标检测的未来。  相似文献   

7.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。  相似文献   

8.
基于深度学习的小目标检测算法综述   总被引:1,自引:0,他引:1       下载免费PDF全文
随着人工智能技术的发展,深度学习技术在人脸识别、行人检测、无人驾驶等领域得到了广泛的应用.而目标检测作为机器视觉中最基本、最具有挑战性的问题之一,近年来受到了广泛的关注.针对目标检测特别是小目标检测问题,归纳了常用的数据集和性能评价指标,并对各类常见数据集的特点、优势及检测难度进行对比,系统性地总结了常用的目标检测方法...  相似文献   

9.
随着自动驾驶领域对目标检测的精度和速度需求的提高,目标检测的研究从传统检测算法转向深度学习方向。由于2D目标检测算法存在小目标丢失等问题,基于深度学习的3D目标检测算法以能提供物体的位置、尺寸和方向等一些空间结构信息的优势,迅速在自动驾驶领域发展起来。首先,简单陈述了2D目标检测算法,将3D目标检测算法分成5个类别,分析了各类目标检测算法的优缺点;然后,详述了最新被提出的基于图神经网络(graph neural network, GNN)的2种算法;最后,对3D目标检测所应用的领域和其研究意义进行总结,并对3D目标检测今后可能发展的方向做出猜想。  相似文献   

10.
目标检测是遥感图像信息提取领域中的研究热点之一,具有广泛的应用前景。近些年来,深度学习在计算机视觉领域的发展为海量遥感图像信息提取提供了强大的技术支撑,使得遥感图像目标检测的精确度和效率均得到了很大提升。然而,由于遥感图像目标具有多尺度、多种旋转角度、场景复杂等特点,在高质量标记样本有限的情况下,深度学习在遥感图像目标检测应用中仍面临巨大挑战。从尺度不变性、旋转不变性、复杂背景干扰、样本量少和多波段数据检测5个角度出发,总结了近几年基于深度学习的遥感图像目标检测方法。此外,对典型遥感图像目标的检测难点和方法进行分析和总结,并对公开的遥感图像目标检测数据集进行概述。最后阐述了遥感图像目标检测研究的未来趋势。  相似文献   

11.
光学遥感图像的目标检测 (Optical remote sensing images object detection, ORSIOD) 是航空和卫星图像分析领域的一个基本但具有挑战性的问题, 近年来受到广泛关注. 本文从如下几个方面介绍了基于深度学习的光学遥感图像目标检测的研究现状. 首先对光学遥感图像目标检测的主要难点进行了介绍, 接着对现有基于深度学习的目标检测算法进行概括, 并以光学遥感图像目标检测的难点为驱动分析对比了不同的基于深度学习的光学遥感图像目标检测方法的优缺点, 最后对未来的发展趋势进行了详细的分析.  相似文献   

12.
由于遥感图像中的目标具有方向任意、分布密集和尺度差异大等特点,使得遥感图像目标检测成为一个颇具挑战性的难题。针对该难题,系统梳理了近三年来深度学习遥感图像旋转目标检测的相关工作,首先介绍旋转框的表示方法及其特点;然后按照特征提取网络、旋转锚框和候选框生成、标签分配及采样策略、损失函数四个方面对当前遥感图像旋转目标检测的现有方法进行分析;再对常用的遥感图像旋转目标数据集进行介绍,对比分析不同算法的性能;最后对遥感图像旋转目标检测进行了展望。  相似文献   

13.
目标检测是计算机视觉领域中的一个研究热点。近年来,深度学习中的卷积神经网络在目标检测任务上表现突出。文中综述了深度学习在目标检测技术中的研究进展。首先,介绍了目标检测的两种方法和常用数据集,并分析了基于深度学习的方法在目标检测任务上所具有的优势。其次,根据深度学习的目标检测方法的发展过程,介绍了该方法所使用的经典卷积神经网络模型,并分析了各网络模型的特点。然后,从获取特征的能力、检测的速度及所使用的关键技术等方面进行了分析和总结。最后,根据基于深度学习的目标检测方法中存在的困难和挑战,对未来的发展趋势做了思考和展望。  相似文献   

14.
目标检测的主要目的是在图像中快速精准地识别定位出预定义类别的目标。而随着深度学习技术的不断发展,检测算法在相应行业大、中目标已达到了不错的成效。鉴于小目标在图像中尺寸较小、特征不全、与图像中背景差异大等特点,基于深度学习的小目标检测算法性能仍需要进一步提升和优化;小目标检测在无人驾驶、医疗诊断、无人机导航等多个领域都有着广泛的需求,因此研究有着很高的应用价值。在文献调研的基础上,先给出小目标检测定义,找到当前小目标检测的重难点;根据这些重难点从六个研究方向分析当前研究现状,并总结各算法优缺点;结合文献及发展现状对该领域未来的研究方向做出合理预测与展望,为后续研究提供一定基础参考。  相似文献   

15.
基于深度学习的目标检测算法研究综述   总被引:1,自引:0,他引:1  
传统的目标检测算法主要依赖于人工选取的特征来对物体进行检测。人工提取的特征对主要针对某些特定对象,比如有的特征适合做边缘检测,有的适合做纹理检测,不具有普遍性。近年来,深度学习蓬勃发展,在计算机视觉领域比如图像分类、目标检测、图像语义分割等方面取得了重大的进展。深度学习作为一种特征学习方法能够自动学习到目标的有用特征,避免了人工提取特征,同时能够保证良好的检测效果。本文首先介绍基于深度学习的目标检测算法研究进展,其次总结目标检测算法中常见的难题与解决措施,最后对目标检测算法的可能发展方向进行展望。  相似文献   

16.
目标检测算法研究综述   总被引:1,自引:0,他引:1       下载免费PDF全文
目标检测是计算机视觉中一个重要问题,在行人跟踪、车牌识别、无人驾驶等领域都具有重要的研究价值。近年来,随着深度学习对图像分类准确度的大幅度提高,基于深度学习的目标检测算法逐渐成为主流。梳理了目标检测算法的发展与现状,并作出展望:总结了传统算法与引入深度学习的目标检测算法的发展、改进与不足,并就此做出对比;最后讨论了基于深度学习的目标检测算法所存在的困难与挑战,并就可能的发展方向进行了展望。  相似文献   

17.
运动目标检测算法在视频监控等领域应用广泛,但是现实场景中由于噪音、光照变化等因素导致背景复杂多变,传统的运动目标检测算法往往效果不佳. 为了提升算法效果,提出了一种新的基于深度编解码网络的运动目标检测算法,将问题转化为像素级的语义分割问题. 事先使用大量数据离线训练出一个编解码网络,来学习背景与视频帧之间的差异性,实际应用中首先使用高斯混合模型进行背景建模,之后将所得背景与视频帧作为网络输入即可直接获取检测结果. 该方法利用了深度卷积网络在抗噪及特征学习等方面的优点,无需进行复杂的参数调优即可实现高性能的运动目标检测. 我们在CDnet2014数据集上进行了实验评估,实验结果显示我们所提出的算法较原GMM算法有很大提升,甚至在一些场景中的表现优于现有的一些顶尖算法. 另外得益于非常简单的背景建模方法以及网络结构,我们的算法在使用GPU的情况下能够近乎实时地进行运动目标检测,实用性很强.  相似文献   

18.
现有的目标检测算法,对大目标以及中目标的检测已具有较高的准确率,然而由于小目标在图像中的像素以及可利用的特征较少等原因,导致小目标的检测精度相较于大目标而言过低。通过融合特征层,小目标的检测已取得了不错的效果,但仍存在对于微小目标的定位等问题。基于此,解释了小目标的定义,指出了导致小目标检测精度低的五点原因。将近几年最新进展以及过往经典的小目标检测优化方法按照大致原理从多尺度特征、评估指标、超分辨率等方面进行叙述。归纳了针对特定场景下的小目标检测:航空遥感图像以及人脸行人的检测方法。总结并提出了未来小目标检测可能的研究方向。  相似文献   

19.
基于卷积神经网络的目标检测研究综述   总被引:1,自引:0,他引:1  
随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要的价值。首先回顾了卷积神经网络如何解决传统目标检测中存在的问题;其次介绍了卷积神经网络的基本结构,叙述了当前卷积神经网络的研究进展以及常用的卷积神经网络;然后重点分析和讨论了两种应用卷积神经网络进行目标检测的思路和方法,指出了目前存在的不足;最后总结了基于卷积神经网络的目标检测,以及未来的发展方向。  相似文献   

20.
目标检测是计算机视觉研究领域的核心问题和最具挑战性的问题之一,随着深度学习技术的广泛应用,目标检测的效率和精度逐渐提升,在某些方面已达到甚至超过人眼的分辨水平.但是,由于小目标在图像中覆盖面积小、分辨率低和特征不明显等原因,现有的目标检测方法对小目标的检测效果都不理想,因此也诞生了很多专门针对提升小目标检测效果的方法....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号