首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The serial discontinuity concept (SDC; Ward and Stanford, in Ecology of River Systems, 1983) predicts that recovery of large regulated rivers over distance downstream from a dam is limited by relative tributary size; however, channel geomorphology may also influence the recovery process. We examined the spatial variation in water quality, benthic composition and ash-free dry standing biomass (AFDM) among the bedrock-defined geomorphological reaches in three turbidity segments of the Colorado River between Glen Canyon Dam and Diamond Creek, Arizona, including most of the Grand Canyon. This 387-km long study area supported virtually no Ephemeroptera, Plecoptera or Trichoptera, probably because cold, stenothermic, hypolimnetic releases limited maximum aestival warming to 17·1°C. The benthos displayed abrupt, physically related decreases in AFDM over distance from the dam and in the varial zone. The 26-km long clear water segment between the dam and the Paria River supported a depauperate Cladophora glomerata/epiphyte/chironomid/Gammarus lacustris/lumbricine/Physella sp. assemblage, and ooze-dwelling oligochaetes. This segment contained 6·9% of the aquatic habitat below the 140 m3/s (normal minimum) discharge stage of the Colorado River study area, but supported 63·5% of the benthic primary producer AFDM and 87% of the benthic consumer AFDM in the entire study area. Turbidity increased and light penetration decreased immediately downstream from the confluence of the small, turbid Paria River, and further downstream from the Little Colorado River confluence. The benthos downstream from the Paria River was abruptly replaced by an Oscillatoria/Simuliium assemblage with a mean AFDM of <0·12 g C/m2. Dam-related effects on water clarity, varial flow and water temperature overrode geomorphological influences on habitat availability. These results generally support the SDC, in that recovery of the benthos did not take place over distance in this large river ecosystem; however, geomorphological differences in substratum availability between reaches mediated dam and tributary effects on water clarity and benthic AFDM. Interactions between flow regulation and geomorphology produce a pattern of circuitous recovery of some physical river ecosystem characteristics over distance from the dam, but not of the benthos. Improving discharge management for endangered native fish populations requires detailed understanding of existing and potential benthic development, and trophic interactions, throughout the geomorphological reaches and turbidity segments in this river. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Dams and associated river regulation have led to the expansion of riparian vegetation, especially nonnative species, along downstream ecosystems. Nonnative saltcedar is one of the dominant riparian plants along virtually every major river system in the arid western United States, but allochthonous inputs have never been quantified along a segment of a large river that is dominated by saltcedar. We developed a novel method for estimating direct allochthonous inputs along the 387 km‐long reach of the Colorado River downstream of Glen Canyon Dam that utilized a GIS vegetation map developed from aerial photographs, empirical and literature‐derived litter production data for the dominant vegetation types, and virtual shorelines of annual peak discharge (566 m3 s?1 stage elevation). Using this method, we estimate that direct allochthonous inputs from riparian vegetation for the entire reach studied total 186 metric tons year?1, which represents mean inputs of 470 gAFDM m?1 year?1 of shoreline or 5.17 gAFDM m?2 year?1 of river surface. These values are comparable to allochthonous inputs for other large rivers and systems that also have sparse riparian vegetation. Nonnative saltcedar represents a significant component of annual allochthonous inputs (36% of total direct inputs) in the Colorado River. We also estimated direct allochthonous inputs for 46.8 km of the Colorado River prior to closure of Glen Canyon Dam using a vegetation map that was developed from historical photographs. Regulation has led to significant increases in riparian vegetation (270–319% increase in cover, depending on stage elevation), but annual allochthonous inputs appear unaffected by regulation because of the lower flood peaks on the post‐dam river. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

3.
Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post‐dam elimination of pronounced annual and sub‐annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post‐dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well‐studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A two‐dimensional hydrodynamic model was applied to seven study reaches in the Colorado River within Grand Canyon to examine how operation of Glen Canyon Dam has affected availability of suitable shoreline habitat and dispersal of juvenile humpback chub (Gila cypha). Suitable shoreline habitat typically declined with increasing discharges above 226–425 m3/ s, although the response varied among modelled reaches and was strongly dependent on local morphology. The area of suitable shoreline habitat over cover types that are preferred by juvenile humpback chub, however, stayed constant, and in some reaches, actually increased with discharge. In general, changes in discharge caused by impoundment tended to decrease availability of suitable shoreline habitat from September to February, but increased habitat availability in spring (May–June). Hourly variation in discharge from Glen Canyon Dam substantially reduced the amount of persistent shoreline habitat at all reaches. Changes in suitable shoreline habitat with discharge were shown to potentially bias historical catch per unit effort indices of native fish abundance up to fourfold. Physical retention of randomly placed particles simulating the movement of juvenile humpback chub in the study reaches tended to decline with increasing discharge, but the pattern varied considerably due to differences in the local morphology among reaches and the type of swimming behaviour modelled. Implications of these results to current hypotheses about the effects of Glen Canyon Dam on juvenile humpback chub survival in the mainstem Colorado River are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We examined subadult humpback chub densities along 24 kms of the Colorado River in the Grand Canyon to: (1) identify geomorphic conditions in the study area; (2) determine associations between subadult humpback chub (<200 mm TL) habitat use and geomorphic differences; and (3) determine how discharge, during base flow conditions, was related to subadult humpback chub habitat conditions. Habitat was categorized at two nested spatial scales: geomorphic reach and shoreline type. Within reaches, shoreline types were categorized according to geomorphology. We measured water depth, velocity and cover attributes along all shoreline types over a range of discharges to determine if habitat quality of reaches and shoreline types varied with discharge. Reaches 1 and 3 had narrow, deep corridors, whereas Reach 2 was a wide, shallow reach. Among shoreline types, depth, velocity and cover varied; however, differences were not consistent between reaches. Fish densities also varied among shoreline types and reaches. Vegetation, talus and debris fan shorelines had the highest densities of subadult humpback chub in a pattern similar to that of cover. In addition, subadult humpback chub presence was associated with a high frequency of cover regardless of shoreline designation. However, these relationships explained little of the overall variation in subadult densities. Lack of a strong association between fish density and geomorphology may be partially due to effects of discharge on habitat quality. The overall trend among shorelines (without regard to type) showed that cover decreased with increasing discharge, whereas depth and velocity increased. However, no consistent pattern between discharge and depth, velocity and cover among individual shoreline types was evident. Vegetated shorelines, consisting mainly of non-native tamarisk (Tamarix chinensis), had nearly twice the fish densities of talus and debris fan. Reasons are discussed as to why subadult humpback chub occupy naturalized habitat like vegetated shorelines in greater densities than natural habitats. The relationships observed in this study have important implications for humpback chub recovery and management of the Colorado River through Grand Canyon. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
We tested the recolonization of the phytobenthic community in the tailwaters of Glen Canyon Dam following long- and short-term experimentally induced desiccation. The response of Cladophora glomerata, Oscillatoria spp., miscellaneous phytobenthos species and periphyton was studied over 18 weeks using three treatments: (1) undisturbed control cobbles from the submerged zone; (2) cobbles desiccated and replaced into the submerged zone; and (3) cobbles desiccated and replaced into the varial zone. Periphyton density and compositional response resulting from these treatments were also examined. Desiccation treatments were significantly different in biomass from controls throughout the study. The biomass of desiccated and replaced river cobbles averaged <30% of the controls for C. glomerata and periphyton during the 18-week recolonization period. In contrast, the biomass of the control Oscillatoria and miscellaneous phytobenthos species averaged only 3 and 50% of that in the desiccation treatments, respectively. Cladophora, the dominant alga, comprised 77% of the phytobenthic biomass. A significant positive relationship between discharge, Cladophora and periphyton biomass was present in all treatments, while there was a negative relationship with discharge for Oscillatoria and miscellaneous phytobenthos species. There was a significant inverse correlation, as well as a pattern of separate biomass dominance, between C. glomerata and Oscillatoria. Cladophora was the dominant phytobenthos species on cobbles below the baseflow and Oscillatoria was dominant on cobbles in the varial zone. In general, the Cladophora biomass decreased under intermittent drying conditions, while Oscillatoria declined under permanently wet conditions. Diatom composition was not significantly different between treatments; however, their density was lower on desiccated cobbles. Diatom density on desiccated cobbles in the submerged and varial zones averaged 69 and 42% of that of the controls, respectively. Recovery and maintenance of benthic resources are hindered by fluctuating flow regimes driven by electricity and irrigation requirements. Repeated desiccation of the phytobenthos has major effects on the bottom-up interactions in the Colorado River ecosystem. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Glen Canyon Dam, located on the Colorado River 24km upstream from Grand Canyon National Park, has affected downstream alluvial sand deposits which are used as campsites by recreational boaters. Inventories of campsite numbers and sizes conducted in 1973, 1983 and 1991, and comparison of aerial photograph series taken in 1965, 1973, 1984 and 1990 show that there has been a system-wide decrease in the number and size of campsites. Campsites are unevenly distributed along the river, and availability is regarded as ‘critical’ along reaches comprising 45% of the river, based on interviews with river guides. During the first 10 years of Glen Canyon Dam operations, at least 30% of all campsites decreased in size. During the next 18 years, between 1973 and 1991, 32% of all campsites decreased in size, and campsite capacity decreased by 44%. High annual dam releases in excess of power plant capacity in 1983 caused a net system-wide increase in the number of campsites, but decreased campsite capacity in two critical reaches. The ‘benefit’ of sand aggradation due to the 1983 high flow was short-lived, and by 1991 only a few campsites were larger than they had been in 1973. In contrast, other sites, especially in critical reaches, were eroded by the 1983 high flows and have not recovered in size. Options for future dam management must consider the variable response of campsites to high flows in critical and non-critical reaches and the duration over which ‘beneficial’ high flow effects persist.  相似文献   

8.
Large woody debris (LWD) is an important component of ecosystem structure and function in large floodplain rivers. We examined associations between LWD distribution and riparian land use, bank stabilization (e.g. riprap revetment), local channel geomorphology, and distance downriver from the dam in the Garrison Reach, a regulated reach of the upper Missouri River in North Dakota, USA. We conducted a survey of shoreline‐associated LWD in the reach during typical summer flow conditions. Reach‐wide LWD density was 21.3 pieces km?1 of shoreline, of which most pieces (39% ) were ‘beached’ between the waterline and the bankfull level, 31% of pieces had evidence of originating at their current location (anchored), 18% of pieces were in deep water (>1 m), and 13% were in shallow water. LWD density along unstabilized alluvial (sand/silt) shorelines (27.3 pieces km?1) was much higher than along stabilized shorelines (7.2 pieces km?1). LWD density along forested shorelines (40.1 pieces km?1) was higher than along open (e.g. rangeland, crop land; 9.2 pieces km?1) or developed (e.g. residential, industrial; 7.8 pieces km?1) shorelines. LWD density was highest overall along unstabilized, forested shorelines (45 pieces km?1) and lowest along open or developed shorelines stabilized with a blanket‐rock revetment (5.5 pieces km?1). Bank stabilization nearly eliminated the positive effect of riparian forest on LWD density. A predicted longitudinal increase in LWD density with distance from the dam was detected only for deep LWD (including snags) along unstabilized alluvial shorelines. Partial resurvey in the summer following the initial survey revealed a reduction in total LWD density in the reach that we attribute to an increase in summer flow between years. Changes in riparian management and land use could slow the loss of LWD‐related ecosystem services. However, restoration of a natural LWD regime in the Missouri River would require naturalization of the hydrograph and modification of existing bank stabilization and channel engineering structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号