首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunotherapy shows great promise in the treatment of hepatocellular carcinoma (HCC), however, the low response rate of HCC patients to immunotherapy caused by inadequately immunogenic and immunosuppressive tumor microenvironment (TME) is a huge challenge. Herein, a donut-like multifunctional polysaccharide nanoplatform (GH-PID) is constructed from doxorubicin/aldehyde hyaluronan nanoring, indocyanine green/hydroxyethyl chitosan nanocomplex, and HCC-bitargeted galactosamine-hyaluronan conjugate via a facile self-assembly process. The GH-PID nanodonuts exhibit excellent HCC-targeted ability and synergetic photochemotherapy effect with a coefficient index of about 0.44. Moreover, near infrared laser-irradiated GH-PID nanodonuts show robust therapeutic efficacy in HCC mouse models by virtue of photochemotherapy-augmented immunogenic cell death (ICD) effect. The remarkable ICD in combination with programmed death-1 antibody efficiently eradicates primary tumors and inhibits distant tumor growth and lung metastasis of HCC by maturing dendritic cells, increasing CD8+ T cell infiltration, suppressing the expansion and trafficking of immunosuppressive myeloid-derived suppressor cells, and ameliorating immunosuppressive TME. This study provides a facile and versatile strategy to construct polysaccharide nanodonuts integrating multifunctionality and highly efficient HCC-targeted ability, and the nanodonuts-based ICD inducer holds great promise for potentiating systemic antitumor immunity and programmed death-1/programmed death-ligand 1 blockade efficacy.  相似文献   

2.
The hyperproliferative tumor stroma of pancreatic ductal adenocarcinoma (PDAC) severely limits drug permeation and constructs an immunosuppressive microenvironment, causing resistance to chemotherapy and immunotherapy. Traditional nanomedicine mainly focuses on manipulating nanoparticles’ particle size or electrical characteristics to penetrate deep PDAC through the paracellular pathway, but the transcellular pathway is often ignored. Therefore, a versatile drug-polymer conjugate PODEA-Gem-HMI is prepared and assembled into nanoparticles for the codelivery of chemotherapy drug gemcitabine and focal adhesion kinase (FAK) inhibitor defactinib. While sensing the mild acidity in the tumor microenvironment, the nanoparticle will disintegrate and release defactinib to modulate the tumor stroma. The PODEA block of the conjugate can bind with cell membranes reversibly and trigger adsorption-mediated transcytosis (AMT) for promoted tumor penetration and cellular uptake. The internalized conjugates will release gemcitabine responding to the overexpressed glutathione (GSH) for enhanced chemotherapy, and PHMI can condensate the STING monomers for prolonged spontaneous immune stimulation.  相似文献   

3.
Immunological tolerance induced by the hypoxic tumor microenvironment has been a major challenge for current immune checkpoint blockade therapies. Here, a hypoxia-responsive drug delivery nanoplatform is reported to promote chemoimmunotherapy of cancer by overcoming the hypoxia-induced immunological tolerance of tumors. The nanovesicles are assembled from manganese ferrite nanoparticles (MFNs) grafted with hypoxia-responsive amphiphilic polymers as the membrane, with doxorubicin hydrochloride (Dox) loaded in the aqueous cavities. Under hypoxic conditions in tumors, the nanovesicles can rapidly dissociate into individual MFNs to release Dox and induce decomposition of tumor endogenous H2O2 for tumor hypoxia relief. As a result, the Dox-loaded nanovesicles display remarkable suppression of primary tumor growth in combination with αPD-L1-mediated checkpoint blockade therapy. Furthermore, the modulation of the hypoxic tumor microenvironment facilitates a long-lasting immunological memory effect to prevent tumor recurrence and metastasis. Therefore, this hypoxia-responsive nanoplatform presents a potential strategy for both local tumor treatment and long-term protection against tumor recurrence.  相似文献   

4.
Immunotherapy has significantly improved cancer treatment, yet the immunosuppressive tumor microenvironment (TME) remains a substantial impediment to therapeutic efficacy. Nanomodulators have emerged as promising tools to address immunosuppressive factors within the TME, enhancing clinical interventions such as immunotherapy, chemotherapy, and radiotherapy while minimizing associated safety risks with immune modulators. In this review, recent advancements are spotlighted in TME-targeted nanomodulators from drug delivery to drug-free concepts. First, nanomodulators designed to synergize with various immunomodulatory agents, including gene tools (mRNA, siRNA, miRNA, plasmid DNA, and CRISPER system), cytokines, immune agonists, and inhibitors are analyzed. Subsequently, recently developed drug-free nanomodulators designed to modulate the physicochemical and biological properties in the microenvironment of solid tumors are succinctly presented. Finally, integrative perspectives on the future development and challenges of nanomodulators in assisting cancer immunotherapy are offered as conclusions.  相似文献   

5.
Tumor immunotherapy has emerged as one of the most promising clinical techniques to treat cancer tumors. Despite its clinical application, the cancerous immunosuppressive microenvironment limits the therapeutic efficiency of the treatment. To generate a stronger immunogenic therapeutic effect, herein, a platinum complex for chemotherapy and a BODIPY photosensitizer for photodynamic therapy are encapsulated into multimodal type II immunogenic cell death (ICD) induce nanoparticles. As the platinum complex and the photosensitizer are able to induce type II ICD, an exceptionally strong immune response is observed in triple-negative breast cancer cells. While remaining stable and therefore poorly cytotoxic in the dark, the nanomaterial is found to quickly dissociate upon exposure to near-infrared light, causing a multimodal mechanism of action in cancer cells as well as multicellular tumor spheroids through combined chemotherapy, photodynamic therapy, and immunotherapy. The nanoparticles are found to nearly fully eradicate a triple-negative breast cancer tumor and therefore to strongly enhance the survival of tumor-bearing mice models using low drug and light doses.  相似文献   

6.
Although much progress has been made by multifunctional nanoplatforms in the treatment of cancer, several defects of existing nanoplatforms, such as tedious preparation, poor biocompatibility, and failure to activate the immune system, have limited their clinical applications. Herein, a versatile nanosystem of folic acid-modified metal-phenolic networks (MPNs) loaded with GOx and CHA (F-MGC) is fabricated by the easy self-assembly of MPNs, during which glucose oxidase (GOx) and chlorogenic acid (CHA) are concurrently loaded. The resulting nanosystem, having a folic acid-modified surface and inherent acid sensitivity, shows versatility in being able to target tumors and release active ingredients in the weakly acidic tumor microenvironment (TME). Based on the catalysis of GOx and Fe3+, the cascade reaction aroused by F-MGC efficiently consumes glucose in the TME and produces abundant cytotoxic hydroxyl radicals, thereby causing the starving and chemodynamic death of cancer cells. In addition, CHA can reshape M2 tumor-associated macrophages (TAMs) into the M1 type, so as to change the immunosuppressive state of TME. The immunogenic cell death (ICD) that occurs from the starvation and chemodynamic therapy, in conjunction with the CHA-induced TAMs polarization, further activates the immune system. Overall, the easily prepared nanoplatform has excellent biocompatibility and effectively inhibits tumor growth and metastasis.  相似文献   

7.
Overcoming innate or adaptive resistance to immune checkpoint inhibitor therapy in solid tumors with limited T-cell responses remains challenging. Increasing evidence has indicated that epigenetic alterations, especially overexpression of DNA methyltransferase and immunosuppressive adenosine, are major obstacles to T cell activation. Here, a tumor microenvironment (TME) inspired prodrug nanomicelle (AOZN) composed of the epigenetic modulator γ-oryzanol (Orz), the adenosine inhibitor α, β-methylene adenosine 5′ diphosphate (AMPCP), and GSH-activable crosslinker, is rationally designed. High glutathione redox triggers Orz and AMPCP release in the TME. The released Orz act as a DNA methyltransferases inhibitor to upregulate gasdermin D (GSDMD) expression and AMPCP converted procaspase-1 into active caspase-1 by increasing ATP levels. Active caspase-1 elicited GSDMD cleavage and induced pyroptosis in tumor cells. Furthermore, it is demonstrated that Orz and AMPCP likely have a synergistic effect in combating the immunosuppressive TME. Moreover, Orz enhances programmed death-ligand 1 (PD-L1) expression and sensitize tumors to anti-PD-L1 therapy. Thus, the AOZNs nano-formulation drastically improves the hydrophobic properties of Orz with advantages of safe, affordable, readily available, and efficiency in regressing tumor growth, enhancing PD-L1 responsive rate and prolonging survival of the B16F10 melanoma-bearing mouse model. As a result, AOZNs provides a promising strategy for enhancing cancer immunotherapy.  相似文献   

8.
Immune checkpoint blockade (ICB) therapy is an emerging strategy for cancer immunotherapy; however, the actual effects of ICB therapy are greatly limited by the immunosuppressive tumor microenvironment (TME, i.e., “cold” tumors). Although engineered nanomaterials display significant importance to regulate TME in cancer treatment, most of them focus on “immunosilent” apoptotic processes that cannot elicit sufficient immune responses for further immunotherapy. Herein, a GSH-responsive nanomodulator is reported that can reverse the immunosuppressive TME for “cold” tumor immunotherapy and lung metastasis inhibition through simultaneous ferroptosis and pyroptosis induction. The nanomodulator is constructed by loading FDA-approved sulfasalazine (SAS) and doxorubicin (DOX) on disulfide-doped organosilica hybrid micelles, where SAS and DOX are released through the GSH-stimulated rupture of micelles to induce ferroptosis and pyroptosis, respectively, promoting dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) elevation through massive tumor-associated antigen release. In vivo experimental results verify that desirable tumor destruction of the nanomodulator at low concentrations is achieved. More importantly, combination of this nanomodulator and programed death ligand-1 antibodies significantly inhibits primary tumors and distant lung metastases as a result of elevated mature DCs and CTLs. This strategy to modulate immunosuppressive TME by nanomodulator-induced non-apoptotic death provides a new promising paradigm for ICB therapy.  相似文献   

9.
The hypoxic tumor microenvironment (TME) significantly affects cancer treatment. Conventional chemotherapeutic agents cannot effectively target hypoxic tumor tissue, which decreases efficacy and results in severe toxic side effects. To alleviate this problem, a self-driving biomotor is developed by functionalizing MCDP nanoparticles containing calcium peroxide and doxorubicin (DOX) loaded onto polydopamine-coated metal–organic frameworks(MOF), with the anaerobic Bifidobacterium infantis (Bif) for synergistic chemotherapy and chemodynamic therapy (CDT) against breast cancer. The materials of institute Lavoisier (MIL) frameworks + CaO2 + DOX + polydopamine (MCDP)@Bif biohybrid actively targets hypoxic regions of solid tumors via the inherent targeting ability of Bif. Once it has accumulated in the tumor tissue, MCDP generates hydroxyl radicals through the enhanced Fenton-type reactions between Fe2+ and self-generated hydrogen peroxide in the acidic TME. The disruption of Ca2+ homeostasis and resulting mitochondrial Ca2+ overload triggers apoptosis and enhances oxidative stress, promoting tumor cell death. The results found that the DOX concentration in MCDP@Bif-treated tumors is 3.8 times higher than that in free-DOX-treated tumors, which significantly prolongs the median survival of the tumor-bearing mice to 69 days and reduces the toxic side effects of DOX. Therefore, the novel bacteria-driven drug delivery system is highly effective in achieving synergistic chemotherapy and CDT against solid tumors.  相似文献   

10.
Photothermal therapy (PTT) is a promising cancer treatment, but it has so far proven successful only with relatively small subcutaneous tumors in animal models. Treating larger tumors (≈200 mm3) is challenging because most PTT materials do not efficiently reach the hypoxic, avascular center of tumors, and the immunosuppressive tumor microenvironment prevents T cells from fighting against residual tumor cells, thereby allowing recurrence and metastasis. Here, the widely used PTT material polydopamine is coated on the surface of the facultative anaerobe Salmonella VNP20009, which can penetrate deep into larger tumors. The coated bacteria are intravenously injected followed by near‐infrared laser irradiation at the tumor site, combined with a local inoculation of phospholipid‐based phase separation gel containing the anti‐programmed cell death‐1 peptide AUNP‐12. The gel releases AUNP‐12 sustainably during 42 days, maintaining the tumor microenvironment as immunopermissive. Using a mouse model of melanoma, this triple combination of biotherapy, PTT, and sustainable programmed cell death‐1 (PD‐1) blockade shows high efficiency on eliciting robust antitumor immune responses and eliminating relatively large tumors in 50% of animals within 80 days. Thus, the results shed new light on a previously unrecognized immunological facet of bacteria‐mediated therapy, and this innovative triple therapy may be a powerful cancer immunotherapy tool.  相似文献   

11.
Post-surgical tumor recurrence remains a major clinical concern for patients with malignant solid tumors. Herein, an immunotherapeutic hydrogel (SAPBA/ZMC/ICG) is developed by incorporating metal ion-cyclic dinucleotide (CDN) nanoparticles (Zn-Mn-CDN, ZMC) and a photosensitizer (indocyanine green, ICG) into phenylboronic acid (PBA)-conjugated sodium alginate (SAPBA) for photothermal therapy (PTT)-triggered in situ vaccination to inhibit post-surgical recurrence and metastasis of malignant tumors. The gelation of SAPBA/ZMC/ICG in the residual tumors can achieve accurate local PTT and the local sustained release of CDN and Mn2+ with minimal detrimental off-target toxic effects. Furthermore, CDN, which is an agonist of the stimulator of interferon genes (STING), along with Mn2+ can activate the STING pathway and trigger type-I-IFN-driven immune responses against tumors. Therefore, the immunotherapeutic hydrogel with enhanced immune response by STING agonist and PTT-induced immunogenic cell death (ICD) reprograms the post-surgical immunosuppressive microenvironment, substantially decreasing the post-surgical recurrence and metastasis of solid tumors in multiple murine tumor models when administered during surgical resection. Taken together, PTT-triggered and STING-mediated in situ cancer vaccination is an effective therapeutic intervention for post-surgical recurrence and metastasis of tumors.  相似文献   

12.
Nanomaterials hold promise for the treatment of human carcinomas but integrating multiple functions into a single drug carrier system remains challenging. Herein, an integrated therapeutic delivery system for human hepatocellular carcinoma (HCC) treatment is reported, which is based on rhodamine B (RhB) end‐labeled cationic poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and hydrophobic poly(3‐azido‐2‐hydroxypropyl methacrylate) (PGMA‐N3) segments equipped with a covalently bound galactose. This biocompatible and safe platform RhB‐PDMAEMA25‐c‐PGMA50‐Gal micelles (Gal‐micelles) offers four advantages: (1) Galactose ligands enhance cellular uptake by targeting the asialoglycoprotein receptor (ASGPR) that is overexpressed on HCC cell lines surfaces; (2) RhB end‐labeling facilitates real‐time imaging for tracking both in vitro and in vivo; (3) the acidic tumor microenvironment protonates the carrier system for efficient drug release as well as gene transfection, (4) codelivery of anticancer drug doxorubicin (DOX) and B‐cell lymphoma 2 small interfering RNA (Bcl‐2 siRNA) works synergistically against tumor growth in both subcutaneous and orthotopic HCC bearing mouse models. This integrated therapeutic delivery system holds potential for future clinical HCC treatment.  相似文献   

13.
Solid tumors are characterized by a hypoxic and immunologically “cold” microenvironment that dramatically limits the therapeutic outcomes of immunotherapy. Thus, strategies and materials that are capable of reversing immunosuppression in immune-cold tumors are highly desired. Herein, it is reported that oxygen (O2) self-supplementing conjugated microporous polymer nanosheets can be utilized to elicit a robust antitumor T cell immune response in the hypoxic and immunosuppressive tumor microenvironment. The ultrathin nanosheets can generate O2 through the water splitting reaction and produce massive reactive oxygen species (ROS) under near infrared light irradiation. Meanwhile, the unique photothermal property of the conjugated polymer nanosheets generates hyperthermia under irradiation. Consequently, they are able to maximize the immunogenic cell death (ICD) performance by inducing adequate damage-related molecular patterns in hypoxic tumors. Other than fostering T cell infiltration by the elicited ICD, the loaded indoleamine 2,3-dioxygenase in nanosheets can reverse the immunosuppression and empower ICD effect for efficient T cells priming. In vivo experiments conclusively prove that the designed polymer nanosheets exhibit great potential for tumor eradication, metastasis prevention, as well as long-term survival. Such a photocatalytic platform opens up new paths for reversing immunosuppression in immune-cold tumors and broadens the application of polymer-based nanosheets for cancer therapy.  相似文献   

14.
Immune checkpoint therapy (ICT) has the potential to treat cancer by removing the immunosuppressive brakes on T cell activity. However, ICT benefits only a subset of patients because most tumors are “cold”, with limited pre‐infiltration of effector T cells, poor immunogenicity, and low‐level expression of checkpoint regulators. It has been previously reported that Cowpea mosaic virus (CPMV) promotes the activation of multiple innate immune cells and the secretion of pro‐inflammatory cytokines to induce T cell cytotoxicity, suggesting that immunostimulatory CPMV could potentiate ICT. Here it is shown that in situ vaccination with CPMV increases the expression of checkpoint regulators on Foxp3?CD4+ effector T cells in the tumor microenvironment. It is shown that combined treatment with CPMV and selected checkpoint‐targeting antibodies, specifically anti‐PD‐1 antibodies, or agonistic OX40‐specific antibodies, reduced tumor burden, prolonged survival, and induced tumor antigen‐specific immunologic memory to prevent relapse in three immunocompetent syngeneic mouse tumor models. This study therefore reveals new design principles for plant virus nanoparticles as novel immunotherapeutic adjuvants to elicit robust immune responses against cancer.  相似文献   

15.
16.
Immunotherapy, especially immune checkpoint blockade (ICB) antibody immunotherapy, has revolutionized the treatment ways of cancers and provided remarkable clinical benefits for multiple cancers. However, the efficacy of immunotherapy in tumors with an immune-excluded or immune-suppressed phenotype is dismal due to the lack or paucity of immune infiltration in the tumor microenvironment. Herein, an emerging photoimmunotherapy based on remodeling the inflammatory microenvironment is reported, ascribed to nanoagonist-mediated gasdermin E (GSDME)-dependent pyroptosis and providing positive feedback to activate anti-PD-1 immunotherapy. An iridium-based photosensitizer (IrP) carrying methyltransferase inhibitor RG108 (R@IrP) lead to rapid cell pyroptosis via the caspase-3/GSDME pathway under the light activation. Furthermore, light-elicited pyroptosis synergized with anti-PD-1 to induce anti-tumor photoimmunotherapy. The pro-inflammatory factors released by pyroptotic cells remodel the inflammatory microenvironment and recruit immune cells to kill tumor cells, resulting in CD8+ cytotoxic T lymphocytes activation, PD-1 expression enhancement, and dendritic cell slightly maturation. Collectively, these findings present a synergistic strategy of photoimmunotherapy, that is, turning immunological cold tumors into hot tumors that can respond to anti-PD-1-based immunotherapy via precise pathway regulation.  相似文献   

17.
Photosensitizers (PSs) with effective reactive oxygen species generation ability against hypoxia are of great potential for clinical treatment of malignant tumors. However, complex tumor microenvironment, such as antioxidative responses and immunosuppression, would ineluctably limit the efficiency of photodynamic therapy (PDT). Herein, a molecular-targeting photosensitizer QTANHOH is rationally designed for histone deacetylases (HDACs-targeting photo-immunotherapy application. The PS QTANHOH displays excellent type-I/II PDT performance, exhibiting significant phototoxicity toward cancer cells with half maximal inhibitory concentration (IC50) less than 10 nm in both normoxia and hypoxia conditions under blue laser irradiation. Moreover, the bioactive compound could inhibit HDACs and activate the immune microenvironment to boost PDT efficacy on the immunocompetent BALB/c mice with breast cancer, leading to the eradication of solid tumor and inhibition of metastasis. Notably, the molecular-targeting photosensitizer introduces an alternative strategy to achieve superior phototherapy for cancer therapy.  相似文献   

18.
Solid tumors are protected from antitumor immune responses due to their hypoxic microenvironments. Weakening hypoxia-driven immunosuppression by hyperoxic breathing of 60% oxygen has shown to be effective in unleashing antitumor immune cells against solid tumors. However, efficacy of systemic oxygenation is limited against solid tumors outside of lungs and has been associated with unwanted side effects. As a result, it is essential to develop targeted oxygenation alternatives to weaken tumor hypoxia as novel approaches to restore immune responses against cancer. Herein, injectable oxygen-generating cryogels (O2-cryogels) to reverse tumor-induced hypoxia are reported. These macroporous biomaterials are designed to locally deliver oxygen, inhibit the expression of hypoxia-inducible genes in hypoxic melanoma cells, and reduce the accumulation of immunosuppressive extracellular adenosine. The data show that O2-cryogels enhance T cell-mediated secretion of cytotoxic proteins, restoring the killing ability of tumor-specific cytotoxic T lymphocytes, both in vitro and in vivo. In summary, O2-cryogels provide a unique and safe platform to supply oxygen as a coadjuvant in hypoxic tumors and have the potential to improve cancer immunotherapies.  相似文献   

19.
Bortezomib (BTZ) is mainly used to treat hematologic tumors, such as multiple myeloma and small cell lymphoma. However, its usefulness for solid tumor therapy is limited owing to its poor stability and toxicity in vivo. In the present study, an amphiphilic PEGylated dendrimer with dopamine molecule is synthesized from azide group–functionalized polyethylene glycol and alkyne group–functionalized dendrimer, which is produced from 1,1‐dimethylolpropionic acid and dopamine. The amphiphilic PEGylated dendrimer with dopamine molecule reacts with BTZ to construct a BTZ prodrug‐based nanoparticle through a ultrasonic emulsification method. The BTZ prodrug‐based nanoparticles have greater serum stability than BTZ alone and release the prototype drug in acidic environments. The BTZ prodrug‐based nanoparticle is more effective against subcutaneous tumors than BTZ itself. Furthermore, c(RGDyK) modification significantly improves the antitumor efficacy of the BTZ prodrug‐based nanoparticle with regard to subcutaneous and intracranial tumors. Moreover, the BTZ prodrug‐based nanoparticle significantly reduces the toxicity of BTZ in vivo. Therefore, the PEGylated BTZ dendrimer prodrug‐based nanoparticles have great potential for the treatment of solid tumors in vivo.  相似文献   

20.
In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. A new nanoparticle construct that is engineered for efficient delivery of siRNA to tumors is now described. The construct comprises a 47‐nm mesoporous silica nanoparticle core coated with a crosslinked polyethyleneimine–polyethyleneglycol copolymer, carrying siRNA against the human epidermal growth factor receptor type 2 (HER2) oncogene, and coupled to the anti‐HER2 monoclonal antibody (trastuzumab). The construct is engineered to increase siRNA blood half‐life, enhance tumor‐specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti‐HER2 nanoparticles produce apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2?) cells. One dose of the siHER2–nanoparticles reduces HER2 protein levels by 60% in trastuzumab‐resistant HCC1954 xenografts. Administration of multiple intravenous doses over 3 weeks significantly inhibits tumor growth (p < 0.004). The siHER2‐nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch‐to‐batch reproducibility and the production methods are suitable for large‐scale production. These results suggest that this siHER2‐nanoparticle is ready for clinical evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号