首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of an inner rotating plate on the heat transfer in a differentially heated inclined enclosure were investigated experimentally. The aspect ratio of the enclosure (height/width) was 1 throughout the experiments. An acrylic plate with a small thermal conductivity was installed horizontally at the center of the square enclosure, and was rotated at various speeds by using a motor attached outside of the enclosure. The inclination angle of the enclosure was varied from –90° to 90°. Purified water was used for the working fluid. The flow pattern was sketched by a visualization experiment using aluminum powder. The heat transfer enhancement can be clearly seen for the inclined enclosure with the hot wall downward facing. The rotating plate used here is useful for the regulation of a wide‐ranging heat transfer rate. © 2001 Scripta Technica, Heat Trans Asian Res, 30(4): 331–340, 2001  相似文献   

2.
The present work deals with numerical modeling of mixed convection flow in a two-sided lid driven inclined square enclosure filled with water-Al2O3 nanofluid. The limiting cases of a cavity heated from below and cooled from above and the one differentially heated are recovered respectively for inclination angles 0° and 90°. The moving walls of the cavity are pulled in opposite directions with the same velocity and maintained at constant but different temperatures while the remaining walls are kept insulated. The numerical resolution of the studied problem is based on the lattice Boltzmann method. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on fluid flow and heat transfer characteristics. The governing parameters of this problem are the Richardson number (varied from 0.1 to 106), the nanoparticles volume fraction (varied from 0 to 0.04) and the inclination angle (varied from 0° to 180°). The critical conditions leading to the transition from monocellular flow to multicellular flow and vice versa are determined. In the common ranges of Richardson number and inclination angle where both monocellular and tri-cellular patterns coexist, the heat transfer is seen to be strongly reduced by the latter.  相似文献   

3.
Natural convection heat transfer in a circular enclosure, one half of which was heated and the other half of which was cooled, was investigated experimentally, focusing on the effect of the inclination angle. The experiments were carried out with water. Flow and temperature field were visualized by using the aluminum and liquid-crystal suspension method. The results show that with downward heating the heat transfer coefficient increased as the inclination angle of the boundary between the heating wall and the cooling wall approached the vertical. But with upward heating, the heat transfer coefficient showed minimal change, exhibiting a small peak value when the inclination angle was γ ˜ –45°. The heat transfer coefficient of a flat circular enclosure was estimated from the circular enclosure's heat transfer coefficient. These results can be explained by the obtained flow and temperature fields. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 152–163, 1999  相似文献   

4.
The problem of two-dimensional natural convection flow of a dielectric fluid in a square inclined enclosure with a fin placed on the hot wall is investigated numerically. The fin thickness and length are 1/10 and 1/2 of the enclosure side, respectively. The Rayleigh number is varied from 103 to 5 × 105 and the solid to fluid thermal conductivity ratio is fixed at 103. The enclosure tilt or inclination angle is varied from 0° to 90°. The streamlines and isotherms within the enclosure are produced and the heat transfer is calculated. It is found that for 2.5 × 104 ≤ Ra ≤ 2.5 × 105, the average Nusselt number is maximum when γ = 0° and minimum when γ = 90°. For Ra = 5 × 105, the values of enclosure tilt angle for which the average Nusselt number is maximum or minimum are completely different due to the transition to unsteady state. In this case, the maximum heat transfer is obtained for γ = 60°, while the minimum heat transfer is predicted for γ = 0°. Monomial correlations relating the average Nusselt number with the different values of the Rayleigh number from 104 to 105 are determined for two different angles, γ = 0° and γ = 90°.  相似文献   

5.
Magnetohydrodynamic (MHD) natural convection flow and associated heat convection in an oriented elliptic enclosure has been investigated with numerical simulations. A magnetic field was applied to the cylindrical wall of the configuration, the top and bottom walls of the enclosure were circumferentially cooled and heated, respectively, while the extreme ends along the cross‐section of the elliptic duct were considered adiabatic. The full governing equations in terms of continuity, momentum, and energy transport were transformed into nondimensional form and solved numerically using finite difference method adopting Gauss–Seidel iteration technique. The selected geometrical parameters and flow properties considered for the study were eccentricity (0, 0.2, 0.4, 0.6, and 0.8), angle of inclination (0°, 30°, 60°, and 90°), Hartmann number (0, 25, and 50), Grashof number (104, 105, and 106), and Darcy number (10?3, 10?4, and 10?5). The Prandtl number was held constant at 0.7. Numerical results were presented by velocity distributions as well as heat transfer characteristics in terms of local and average Nusselt numbers (i.e., rate of heat transfer). The optimum heat transfer rate was attained at e value of 0.8. Also, the heat transfer rate increased significantly between the angles of inclination 58° and 90°. In addition, Hartmann number increased with decreased heat transfer rate and flow circulation. A strong flow circulation (in terms of velocity distribution) was observed with increased Grashof and Darcy numbers. The combination of the geometric and fluid properties therefore can be used to regulate the circulation and heat transfer characteristics of the flow in the enclosure.  相似文献   

6.
The flow and heat transfer in a parallelogram enclosure filled with a porous medium is analyzed numerically. The heated bottom wall has a sinusoidal temperature distribution and side walls cooled isothermally while the upper wall is well insulated. Dimensionless Darcy law and energy equations are solved using the finite difference method along with the corresponding boundary condition. Computations were carried out for four inclination angles of side walls (γ = 45°, 60°, 75°, 90°) with different Rayleigh numbers (100≤Ra≤1000) and their effects on the flow field and heat transfer are discussed. It is found that the inclination angle has a significant effect on flow pattern and heat transfer and an increase in the angle leads to a decrease in the strength of the right vortex. The study also revealed that as the Rayleigh number increases at γ = 45°, another (third) vortex develops along the left wall and its strength enhances with Rayleigh number. At the end, a correlation is extracted from the numerical data which represents the relation between the Nusselt number, inclination angle, and the Rayleigh number. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; 39(7): 497–506, 2010; Published online in Wiley Online Library ( wileyOnlinelibrary.com ). DOI 10.1002/htj.20312  相似文献   

7.
An enhancement technique is developed for natural convection heat transfer from a vertical heated plate with inclined fins, attached on the vertical heated plate to isolate a hot air flow from a cold air flow. Experiments are performed in air for inclination angles of the inclined fins in the range of 30° to 90° as measured from a horizontal plane, with a height of 25 to 50 mm, and a fin pitch of 20 to 60 mm. The convective heat transfer rate for the vertical heated plate with inclined fins at an inclination angle of 60° is found to be 19% higher than that for a vertical heated plate with vertical fins. A dimensionless equation on the natural convection heat transfer of a vertical heated plate with inclined fins is presented. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 334–344, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20168  相似文献   

8.
Air is filled in a cubic enclosure whose one vertical wall is isothermally heated and the opposite one is cooled while the other four walls are thermally insulated. A large coil is placed outside of this enclosure with the coil center coinciding with the cube center. An electric current in the coil generates a magnetic field to affect the convection of air, because the air contains oxygen whose magnetic susceptibility is exceptionally large among gases. The coil is further inclined around the X axis, which is horizontal and perpendicular to the hot and cold walls through the wall center. The heat transfer rate changes depending on the inclination angle. This system is studied numerically for convection for the following combination of parameters: Ra = 1.51 × 104, 9.06 × 104; Pr = 0.71; γ = 0 ? 100; xEuler = 0–π/2, where γ represents the strength of magnetic field and xEuler is the angle of inclination of the coil. For example, at Ra = 1.51 × 104 and γ = 30, the average Nusselt number 2.535 at xEuler = 0 increased to 2.823 at xEuler = π/2. This study suggests that the coil inclination affects the heat transfer rate extensively.  相似文献   

9.
Heatline visualization technique is used to understand heat transport path in an inclined non-uniformly heated enclosure filled with water based CuO nanofluid. The cavity has square cross-section and it is non-uniformly heated from a wall and cooled from opposite wall while other walls are adiabatic. The governing equations which are continuity, momentum and energy equations are solved using finite volume method. The dimensionless heatfunction for nanofluid heat flow is defined and solved to determine heatline patterns. Calculations were performed for Rayleigh numbers of 103, 104 and 105, inclination angle of 0°, 30°, 60° and 90°, and nanoparticle fraction of 0, 0.02, 0.04, 0.06, 0.08 and 0.1. It is observed that heat transfer in the cavity increases by adding nanoparticles. The rate of increase is greater for the enclosures with low Rayleigh number. Visualization of heatline is successfully applied to nanoparticle convective flows. Based on the heatline patterns, three heat transfer regions are observed and discussed in details.  相似文献   

10.
A steady laminar two‐dimensional magneto‐hydrodynamic natural convection flow in an inclined trapezoidal enclosure filled with a fluid‐saturated porous medium is investigated numerically using a finite difference method. The left and right vertical sidewalls of the trapezoidal enclosure are maintained at a cold temperature. The horizontal top wall is considered adiabatic while the bottom wall is subjected to isoflux heating. A volumetric internal heat generation or absorption is embedded inside the trapezoidal enclosure while an external magnetic field is applied on the left sidewall of the enclosure. In the current work, the following parametric ranges of the non‐dimensional groups are used: Hartmann number is varied as , Darcy number is taken as , 10?4, and 8 × 10?5, Rayleigh number is varied as , Prandtl number is considered constant at Pr = 0.7, the dimensionless internal heat generation or absorption parameter is varied as Δ = ?0.2, 0, 1, and 2.0, while the trapezoidal enclosure inclination angle is varied as . The results indicated a strong flow circulation occurs when the Darcy and the Rayleigh numbers are high. In addition, it is found that the Hartmann number, internal heat generation or absorption parameter and inclination angle have an important role on the flow and thermal characteristics. It is also found that when the enclosure inclination angle and Hartmann number increase the average Nusselt number along the hot bottom wall decreases. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21013  相似文献   

11.
The effects of inclination on the steady natural convection local heat transfer characteristics in an air-filled enclosure, which is composed of rectangular and parallelogrammic portions, are studied numerically. In this investigation, two geometrical aspect ratios are introduced: one for a parallelogrammic portion of an enclosure, the other for a rectangular one. The governing equations for a two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which ensures the conservative characteristics to be satisfied in the calculation domain, and then solved by a modified SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term. Computations are carried out for Prandtl number Pr = 1 and Rayleigh number Ra = 2.7 × 108. In order to obtain a greater understanding of the flow and heat transfer behaviors, flow patterns with streamlines and isotherms at different inclination angles are shown. Also, the effects of numbers of installed guide vanes in a composed enclosure are studied to consider the enhancement of heat transfer of the inner diode. © 1999 Scripta Technica, Heat Trans Asian Res, 28(7): 573–582, 1999  相似文献   

12.
Effects of micro heat pipe (MHP) cross-sections and orientations on its thermal performance are experimentally investigated in this study. Tests are conducted using five different cross-sections (circular, semicircular, elliptical, semi-elliptical and rectangular) of micro heat pipes having same hydraulic diameter of 3 rnm placed at three different inclination angles (0°, 45°, 90°), where water is used as the working fluid. Evaporator section of the MHP is heated by an electric heater and the condenser section is cooled by circulation of water in an annular space between condenser section and the water jacket. Temperatures at different locations of the MHP are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the MHP is flattened. Thus among all cross-sections of MHP, circular one exhibits the best thermal performance in terms of heat flux dissipation followed by semi-elliptical, semi-circular, elliptical and rectangular cross-sections. Moreover, its heat transfer capability also decreases with decreasing of its inclination angle. Finally, a correlation is developed which covers all the experimental data within +7%.  相似文献   

13.
ABSTRACT

The natural-convective heat transfer in an inclined square enclosure is studied numerically. The top and bottom horizontal walls are adiabatic, and the right side wall is maintained at a constant temperature T 0. The temperature of the opposing vertical wall varies by sine law with time about a mean value T 0. The system of Navier–Stokes Equations in Boussinesq approximation is solved numerically by the control-volume method with SIMPLER algorithm. The enclosure is filled with air (Pr = 1) and results are obtained in the range of inclination angle 0° ≤ α ≤ 90° for two values of Grashof number (2 × 105 and 3 × 105). It can be noted that there is a nonzero time-averaged heat flux through the enclosure at α ≠ 0°. The dependencies of time-averaged heat flux on oscillation frequency and inclination angle are depicted. It is found that the maximal heat transfer corresponds to the values of inclination angle α = 54 and dimensionless frequency f = 20π for both Grashof numbers studied (2 × 105 and 3 × 105).  相似文献   

14.
This article presents a heatline method to analyse the transport mechanism of heat transfer and convective flow of nanofluids in an inclined square enclosure, where a heated thin plate located in the middle of the enclosure. The fluid flow, heat transfer, and heat transport characteristics are illustrated using streamlines, isotherms, Nusselt number and heatlines. Results show that fluid flow and temperature fields strongly depend on Rayleigh number, inclination angle, solid volume fraction, types of nanoparticles and the plate length, and the maximum strength of heatfunction increases as the inclination angle and Rayleigh number increase.  相似文献   

15.
Experimental investigation was performed on the mixed convection heat transfer of thermal entrance region in an inclined rectangular duct for laminar and transition flow. Air flowed upwardly and downwardly with inclination angles from ?90° to 90°. The duct was made of duralumin plate and heated with uniform heat flux axially. The experiment was designed for determining the effects of inclination angles on the heat transfer coefficients and friction factors at seven orientations (θ = ? 90°, ?60°, ?30°, 0°, 30°, 60° and 90°), six Reynolds numbers (Re  420, 840, 1290, 1720, 2190 and 2630) within the range of Grashof numbers from 6.8 × 103 to 4.1 × 104. The optimum inclination angles that yielded the maximum heat transfer coefficients decreased from 30° to ?30° with the increase of Reynolds numbers from 420 to 1720. The heat transfer coefficients first increased with inclination angles up to a maximum value and then decreased. With further increase in Reynolds numbers, the heat transfer coefficients were nearly independent of inclination angles. The friction factors decreased with the increase of inclination angles from ?90° to 90° when Reynolds numbers ranged from 420 to 1290, and independent of inclination angles with higher Reynolds numbers.  相似文献   

16.
Laminar steady state natural convection in inclined shallow cavities has been numerically studied. The side facing the opening is heated by a constant heat flux, sides perpendicular to the heated side are insulated and the opening is in contact with a fluid at constant temperature and pressure. Equations of mass, momentum and energy are solved using constant properties and Boussinesq approximation and assuming an approximate boundary conditions at the opening. Isotherms and streamlines are produced, heat and mass transfer is calculated for Rayleigh numbers from 103 to 1010, cavity aspect ratio A=H/L from 1 to 0.125. The results show that flow and heat transfer are governed by Rayleigh number, aspect ratio and the inclination. Heat transfer approaches asymptotic values at Rayleigh numbers independent of the aspect ratio. The asymptotic values are close to that for a flat plate with constant heat flux. The effect of elongation of open cavities is to delay this asymptotic behavior. It is also found that the inclination angle of the heated plate is an important parameter affecting volumetric flow rate and the heat transfer.  相似文献   

17.
The present work is concerned with natural convection from open cavities or heated plates attached with parallel vertical strips. The bottom of the cavity is heated, and the vertical walls are assumed adiabatic. Numerical results are presented for steady, laminar natural convection for the geometry described. Effects of Rayleigh numbers from 1 × 10 3 to 1 × 10 7 , inclination angles from 10° to 90°, and aspect ratios of 0.5, 1.0, and 2.0 are investigated for a fixed Prandtl number (0.7). It is found that the average Nusselt number is not very sensitive to the inclination angle. Flow becomes unstable at high Rayleigh numbers and at low inclination angles. Flow pattern and heat transfer results are presented and discussed.  相似文献   

18.
This study investigates natural convection heat transfer of water-based nanofluids in an inclined square enclosure where the left vertical side is heated with a constant heat flux, the right side is cooled, and the other sides are kept adiabatic. The governing equations are solved using polynomial differential quadrature (PDQ) method. Calculations were performed for inclination angles from 0° to 90°, solid volume fractions ranging from 0% to 20%, constant heat flux heaters of lengths 0.25, 0.50 and 1.0, and a Rayleigh number varying from 104 to 106. The ratio of the nanolayer thickness to the original particle radius is kept at a constant value of 0.1. The heat source is placed at the center of the left wall. Five types of nanoparticles are taken into consideration: Cu, Ag, CuO, Al2O3, and TiO2. The results show that the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. The results also show that the length of the heater is also an important parameter affecting the flow and temperature fields. The average heat transfer decreases with an increase in the length of the heater. As the heater length is increased, the average heat transfer rate starts to decrease for a smaller inclination angle (it starts to decrease with inclination at 90° for ? = 0.25, 60° for ? = 0.50, 45° for ? = 1.0, respectively).  相似文献   

19.
An experimental study was carried out to investigate the pool boiling heat transfer in an inclined annular tube submerged in a pool of saturated water at atmospheric pressure. The outer diameter and the length of the heated inner tube were 25.4 mm and 500 mm, respectively. The gap size of the annulus was 15 mm. For the tests, annuli with both open and closed bottoms were considered. The inclination angle was varied from the horizontal position to the vertical position. At a given heat flux, the heat transfer coefficient was increased with the inclination angle increase. Effects of the inclination angle on heat transfer were more clearly observed in the annulus with open bottoms. The main cause for the tendencies was considered as the difference in the intensity of liquid agitation and bubble coalescence due to the enclosure by the outer tube. One of the important factors in the annulus with open bottom was the convective fluid flow.  相似文献   

20.
Laminar natural convection in inclined enclosures filled with different fluids was studied by a numerical method. The enclosure was divided by a solid impermeable divider. One side of partition of enclosure was filled with air and the other side had water. The enclosure was heated from one vertical wall and cooled from the other while horizontal walls were adiabatic. The governing equations which were written in stream function–vorticity form were solved using a finite difference technique. Results were presented by streamlines, isotherms, mean and local Nusselt numbers for different thermal conductivity ratios of solid impermeable material (plywood or concrete), inclination angle (0° ≤ ? ≤ 360°) and Grashof numbers (103 ≤ Gr ≤ 106). The code was validated by earlier studies, which are available in the literature on conjugate natural convection heat transfer. Analytical solutions were obtained for low Grashof numbers. Obtained results showed that both heat transfer and flow strength strongly depended on thermal conductivity ratio of the solid material of partition, inclination angle and Grashof numbers. The heat transfer was lower in the air side of the enclosure than that of the water side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号