首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用线性低密度聚乙烯(LLDPE)和马来酸酐接枝线性低密度聚乙烯(MLLDPE)增韧回收聚对苯二甲酸乙二醇酯(r-PET),并分别比较了LLDPE与r-PET、MLLDPE与r-PET的相容性及其对复合材料的增韧效果;利用均苯四甲酸酐(PMDA)对r-PET进行扩链,探讨其用量对r-PET复合材料力学性能的影响。结果表...  相似文献   

2.
用熔融共混的方法分别制备了两相复合材料MWNT(多壁碳纳米管)/LDPE、MWNT/PS和多相复合材料MWNT/LDPE/PS,以上3种复合材料的导电渗滤阈值分别为8%(wt,下同)、6%和4%.SEM观察发现,MWNT选择性的分布于MWNT/LDPE/PS复合材料的LDPE相中.当LDPE/PS的质量比为50/50时,聚合物基体形成双连续结构,由于双重渗滤的作用,复合材料的渗滤阈值降低到4%.  相似文献   

3.
导热LLDPE/SiC复合材料的性能研究   总被引:1,自引:0,他引:1  
采用碳化硅(SiC)和线性低密度聚乙烯(LLDPE)粒子经粉末混合和热压成型制得导热复合塑料。研究了SiC用量及粒径对材料热导率、体积电阻率和介电常数、力学性能以及热稳定性的影响。结果表明:随着填料用量的增加,热导率、介电常数升高,而力学性能下降。在碳化硅用量为50%时,材料的热导率、介电常数、体积电阻率、拉伸强度分别为1.15 W/m K、4.182、4.51×1013Ω.cm、6.3MPa。此外,不同粒径大小的碳化硅粒子配合使用比单一粒径填充更能提高份额和材料的导热性能。  相似文献   

4.
顾晓华  李付 《材料导报》2017,31(Z2):388-391
以线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)、有机改性的蒙脱土(MMT)为主要原料,选用乙烯-醋酸乙烯酯接枝马来酸酐(EVA-g-MAH)作为增容剂,采用熔融插层法制备了线性低密度聚乙烯/高密度聚乙烯/蒙脱土(LLDPE/HDPE/MMT)纳米复合材料。通过X射线衍射(XRD)分析蒙脱土在聚乙烯基体中的分散情况,并研究蒙脱土的含量对其在基体中分散效果的影响。TG实验结果表明,蒙脱土的加入使LLDPE/HDPE/MMT纳米复合材料的热稳定性得到很大的提高。由DSC曲线可以得出,加入蒙脱土的复合材料相比于纯聚合物,其熔点和热分解温度都有很大的提高,提高程度与蒙脱土的含量有关。  相似文献   

5.
采用两种方法优化LLDPE/ZnO纳米复合材料的工艺参数,选取性能最佳的工艺条件制备样本,进一步应用FES-EM和SEM方法研究分散状态和断裂形貌,并测试纳米复合材料的力学性能。研究发现,正交实验、神经网络和遗传算法三者相结合的优化方法比单纯的正交实验分析的优化方法更佳;纳米ZnO微粒在线性低密度聚乙烯(LLDPE)基体中能够发挥纳米效应,促进复合材料的脆韧转变过程,起到了增强增韧的作用;拉伸强度、断裂伸长率均有所提高。纳米ZnO填充量为3%时,拉伸强度提高最大;纳米ZnO填充量为5%时,断裂伸长率提高最大。  相似文献   

6.
孙艳妮  张润鑫  冯莺  赵季若 《材料工程》2006,(Z1):124-127,131
以三氯化铝(AlCl3)作催化剂,将多壁碳纳米管(MWNTS)悬浮在氯仿(CHCl3)溶液中,通过亲电加成反应,对MWNTS进行了侧壁化学修饰,并对化学修饰后的MWNTS作了红外光谱的分析.分别采用机械共混法和溶液共沉淀法制备了CPE/CNTs复合材料,对CPE/CNTs复合材料进行了拉伸性能及流变性能的测试,并利用扫描电子显微镜(SEM)观察了CPE/CNTs复合材料拉伸断面的形貌特征.结果表明:CPE/CNTs复合材料的拉伸强度随碳纳米管加入量的增加而增大,当碳纳米管的加入量为5份时,其拉伸强度最大,与纯氯化聚乙烯的拉伸强度相比,提高了75%;化学修饰后的碳纳米管在氯化聚乙烯基体中有了较好的分散性和相容性;CPE/CNTs复合材料的表观粘度随碳纳米管加入量的增加而逐渐增大.  相似文献   

7.
为了探讨胶原蛋白(HC)和相容剂马来酸酐接枝低密度聚乙烯(LDPE-g-MAH)对聚合物材料性能产生的影响,以低密度聚乙烯(LDPE)为基体,用共混挤出的方法制备了HC/LDPE复合材料和HC/LDPE-MAH复合材料,并将复合材料注塑成不同规格样条。通过力学性能测试、SEM和热分析等表征方法研究了HC和LDPE-g-MAH含量对HC/LDPE及HC/LDPE-MAH复合材料结构和性能的影响。结果表明:当HC加入量为5wt%时,HC/LDPE复合材料拉伸强度达到最大值15.824 MPa;LDPE-g-MAH的加入可明显改善界面粘结性,提高材料力学性能及热稳定性,当HC含量为20wt%,LDPE-g-MAH含量为4wt%时,HC/LDPE-MAH复合材料的拉伸性能最优。  相似文献   

8.
9.
为研究采用多壁碳纳米管在聚氨酯清漆中的抗静电效果,制备了一系列抗静电涂料,结果表明聚氨酯/多壁碳纳米管涂料可以满足抗静电需要(即表面电阻率在105~109Ω范围).碳纳米管含量与电性能曲线为典型渗流曲线,其渗流阈值为2wt%.在较低的添加量(2wt%)时,碳纳米管表电性能优于炭黑,当添加量较高(5wt%)时,其电性能反而比炭黑差,采用适当的酸处理的方法可以进一步提高聚氨酯/多壁碳纳米管的导电性能.  相似文献   

10.
采用熔融共混制备了LLDPE/乙炔黑/煤粉复合材料,并通过毛细管流变仪对复合材料的流变性能进行了研究。详细讨论了复合材料的组成、剪切应力和剪切速率及温度对熔体流变行为、熔体黏度的影响。结果表明,LLDPE/乙炔黑/煤粉体系呈假塑性流体,表观黏度随着剪切速率增加而降低。当填料乙炔黑/煤粉含量在0%~40%范围内时,随着含量的增加,复合材料的表观黏度先增大后减小。填料乙炔黑/煤粉可以有效地增加粘流活化能,当含量为30%时,体系的表观黏度最大。  相似文献   

11.
12.
MPE/LLDPE/LDPE共混熔体的流变学   总被引:6,自引:3,他引:6  
研究了不同比例共混的茂金属聚乙烯(MPE),线性低密度聚乙烯(LLDPE)及高压聚乙烯(20%固定质量配比的LDPE)熔体的流变学行为,讨论了共混物组成,剪切速率和剪切应力以及温度对熔体流变曲线,熔体粘度和膨胀比的影响,为MPE的共混改性加工提供了理论依据,不同共混比的熔体均为假塑性流体,共混熔体的假塑性随LDPE/LLDPE的增多而增强,共混熔体的转变应力和非牛顿指数随LDPE/LLDPE的增加而降低,对加工的敏感性提高,加工性能得到改善。  相似文献   

13.
LLDPE及VLDPE对LDPE/HDPE共混物拉伸性能的影响   总被引:6,自引:0,他引:6  
研究了线性低密度聚乙烯(LLDPE)和极低密度聚乙烯(VLDPE)对高密度聚乙烯(HDPE)/低密度聚乙烯(LDPE)共混物拉伸性能的影响。由于LLDPE或VLDPE的加入,改善了HDPE与LDPE间的相互作用,提高了HDPE/LDPE共混物的拉伸性能。  相似文献   

14.
以低密度聚乙烯为基体,天然石墨为填料,通过熔融共混法制备了导电复合材料,并进一步采用超临界二氧化碳对其进行爆破处理,得到经CO2剥离分散后的导电材料。通过万用表、旋转流变仪和万能拉力试验机对超临界二氧化碳处理前后的复合材料的电性能、流变性能和力学性能进行了测试。结果表明,未经超临界二氧化碳处理,复合体系发生导电逾渗时填料含量为40%~45%,发生流变逾渗时填料含量为35%。经超临界二氧化碳处理后,导电逾渗发生时填料含量降低到25%~30%,体系的电阻率下降了1~2个数量级,流变逾渗现象出现的填料含量也降低至20%。并且与未经超临界二氧化碳处理的复合材料相比,处理后材料的拉伸强度与断裂伸长率均有所增加。  相似文献   

15.
以聚乙二醇(PEG)为相变物质,同层状纳米蒙脱土(MMT)进行插层复合,选择聚乙烯接枝马来酸酐(LDPE-gMAH)为增容剂在Brabender塑化机中同低密度聚乙烯(LDPE)树脂熔融共混制备复合相变材料.采用红外光谱(IR)、差示扫描量热仪(DSC)和偏光显微镜(PLM)对LDPE/MMT/PEG复合相变材料的结构...  相似文献   

16.
以有机改性蒙脱土(OMMT)作为纳米隔声填料,分别通过熔融共混法和溶液共混法制备了LDPE/OMMT复合材料,研究了蒙脱土含量和制备方法对复合材料的隔声性能的影响。采用多级拉伸共挤出装置改善蒙脱土在基体中的分散,研究不同力场大小作用下蒙脱土分散形态及复合材料的隔声性能。结果表明,少量蒙脱土的加入可以大幅度改善LDPE的隔声性能,但是随着蒙脱土含量的增加,蒙脱土团聚严重,复合材料的隔声性能变差,与熔融共混相比,由于溶液共混法更能使蒙脱土在基体中分散,制备的复合材料的隔声性能更好。随着分割叠加单元个数的增加,蒙脱土在LDPE基体中分散改善,当分割-变形-叠加单元(LME)个数达到8个时,蒙脱土纳米级分散在基体中,复合材料的隔声性能最佳。  相似文献   

17.
PS/LLDPE原位增容及合金的热性能与动态流变行为   总被引:1,自引:0,他引:1  
用傅立叶红外光谱、热失重分析、动态流变等方法研究了聚苯乙烯(PS)/线型低密度聚乙烯(LLDPE)大分子之间的Friedel-Crafts烷基化反应.结果表明,在PS/LLDPE(质量比80/20)共混物中加入0.4%的AlCl<,3>,有利于生成较多LLDPE-g-PS接枝物,其接枝百分比达30.9%,与简单共混体系...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号