首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
仿生扑翼飞行器作为一种新型的飞行器,具有噪声小、隐蔽性好、机动性强、能量利用效率高等优势,在民用和军用领域具有广阔的应用前景.仿生扑翼飞行器的自主飞行能力是高效执行飞行任务的关键.目前,国内外飞行器的自主飞行研究已经取得了一些成果,然而鲜有以仿生扑翼飞行器为载体的研究.仿生扑翼飞行器特有的驱动结构给自主飞行控制研究带来了较大的挑战.本文以仿猎鹰扑翼飞行器作为研究平台设计了自主飞行控制系统.由于仿猎鹰扑翼飞行器的负载较小,本文采用了重量较轻的STM32微型计算平台作为主控芯片设计了硬件系统.由于微型计算平台的算力有限,本文综合考虑制导精度和运算速度,提出了一种线性/非线性切换制导算法,并通过仿真实验与线性制导、非线性制导算法进行了对比,证明了其更加适合于仿猎鹰扑翼飞行器.考虑到仿猎鹰扑翼飞行器的机构滞后问题,对其滚转角和高度设计了一个串级PID控制器.结合面向仿猎鹰扑翼飞行器的地面站软件,最终实现了基于仿猎鹰扑翼飞行器的自主定高圆弧轨迹跟踪任务.  相似文献   

2.
随着无人飞行器的小型化甚至微型化发展,扑翼飞行的优势逐渐显现出来。受鸟类及昆虫飞行运动的启发,分析鸟类及昆虫的扑翼运动特性,设计了一种鸟类扑翼飞行方式,使用涡格法进行了扑翼的气动计算,并采用质点弹道学模型分析了仿生飞行的轨迹特性。仿真结果表明,设计的扑翼运动效果良好。  相似文献   

3.
基于仿生学的微扑翼飞行器是一种模仿鸟类飞行的新概念飞行器.鉴于扑翼飞行理论及实践本身的困难,为了减少设计制造中的风险,开发了微型仿鸟扑翼飞机设计与仿真系统.采用Visual C 和MATLAB进行仿生学设计模块、驱动机构和气动力计算模块的开发,由此进行扑翼飞机结构及动力学设计,生成初步样机.结合OpenGL技术,建立微型扑翼飞机的三维可视化结构模型,进行扑翼飞机的运动和虚拟飞行仿真.进行扑翼飞机的开发实例分析,结果与实际制作的扑翼飞机各项特征吻合.该系统有很高的实用价值,可以有效地辅助进行微型仿鸟扑翼飞机的研制工作.  相似文献   

4.
针对仿生扑翼飞行器的驱动结构进行设计,提出了一种空间摇杆式的驱动机构与机翼扭转机构,实现机翼扑动过程中的"0"形空间运动轨迹.针对机翼的空间"0"字形运动,建立仿生飞行器气动分析模型,采用动网格与非定常数值计算方法,对机翼拍动过程中不同相位下的升阻特性进行分析,并通过空气动力效率与流场对比分析,得到不同参数条件下的气动效率,为仿生扑翼飞行器的设计及扑动模式的选择提供参考.通过气动力测量实验、台架姿态标定和外场飞行测试,验证了结构设计的合理性.  相似文献   

5.
随着昆虫飞行机理和仿生扑翼飞行研究的不断进展,理解昆虫的传感系统并研制适于微型扑翼飞行器的仿生传感器逐渐成为目前关注的焦点,而MEMS的快速发展使得研制新型的仿生微型传感器成为可能。简要介绍仿生扑翼飞行中传感系统研究现状,对昆虫飞行中采用的力传感器原理、分类进行了介绍;重点分析了几种典型的力传感器;归纳和总结了基于昆虫毛状传感器、钟状传感器和平衡棒仿生,采用各种MEMS技术研制的微型力传感器的生产工艺和应用特点;探索和展望了仿生力传感器的发展特点和今后的发展趋势。  相似文献   

6.
扑翼微型飞行器是一种模仿鸟类或昆虫飞行的新概念飞行器。介绍SolidWorks设计软件在驱动机构运动仿真、翅翼频率分析和参数化设计中的应用。结果表明,SolidWorks应用于扑翼微型飞行器设计制造可以简化设计流程,提高设计效率。  相似文献   

7.
为研制一种轻质仿昆虫微扑翼飞行器,提出了采用微机电系统(MEMS)领域的SU-8光刻胶作为结构材料的制作方案.基于仿生学原理和微机电系统加工技术,设计微扑翼飞行器结构及MEMS 工艺方法.研究结果表明,该种结构设计及制作方案满足设计要求,为仿昆虫微扑翼飞行器的研制提供了一种很好的途径.  相似文献   

8.
胡明朗  魏瑞轩 《机器人》2007,29(6):1-574,580
提出一种解耦操控机制,用于解决微型仿昆扑翼飞行器飞行控制中的欠驱动问题.首先通过理论分析和仿真试验分析了翅膀的振翅运动参数对气动力旋量的控制作用;然后在对昆虫飞行所采用的生物学振翅运动进行模拟的基础上,通过调整翅膀的振翅运动参数,设计了一个能对气动力和气动力矩实现独立控制的解耦操控机制.此操控机制采用周期函数将控制输入量参数化,从而在仿昆扑翼布局的动力学模型中引入更多数目的独立控制量.通过将原动力学系统转化为完全能控系统,解决了仿昆扑翼布局的欠驱动控制问题.同时,此操控机制仅仅要求转动角可控,有效地降低了仿昆扑翼飞行器的设计难度.  相似文献   

9.
针对仿鸟扑翼飞行器的欠驱动特性,提出了一种简化其飞行控制问题并实现其局部渐近稳定的控制方法.建立并分析了仿鸟扑翼飞行器的动力学和运动学模型,证明其控制问题等价于升力、推力独立可控情况下的姿态控制问题.进一步分析的结果表明,仿鸟扑翼飞行器的升力、推力都是独立可控的,其姿态控制为耦合输入下刚体的姿态控制问题.通过设计光滑时变反馈控制律实现姿态控制的局部渐近稳定,从而解决扑翼飞行器的飞行控制问题.  相似文献   

10.
作为一种新型飞行机器人, 仿蝴蝶扑翼飞行机器人模仿自然界蝴蝶的生物结构和飞行方式, 能够有效地融 入并适应复杂环境, 在军民融合领域具有广阔的应用前景. 目前针对仿蝴蝶扑翼飞行机器人的研究大多停留在对生 物蝴蝶飞行机理的研究, 鲜有能够实现自由可控飞行的机器人系统. 本文设计了一款基于线驱转向的仿蝴蝶扑翼飞 行机器人, 名为USTButterfly-S, 其翼展50 cm, 重50 g, 可实现长达5分钟的自由可控飞行. 首先结合生物蝴蝶翅膀的 扑动特征, 设计了双曲柄双摇杆对称扑翼驱动机构. 然后模仿凤蝶的翅翼形状, 设计了仿蝴蝶翼型. 对翅膀的几何学 分析表明, USTButterfly-S的翅膀与凤蝶具有较好的形态相似性. 接着针对仿蝴蝶扑翼飞行机器人的转向控制问题, 首次采用线驱动机构拉动翅膀调节翅翼面积, 进而实现了USTButterfly-S的无尾航向控制. 最后集成自主设计的飞 控系统, USTButterfly-S能够实现室内盘旋飞行并进行实时航拍. 在实际飞行实验中, USTButterfly-S展现出类似生 物蝴蝶的飞行特征.  相似文献   

11.
邢永刚  唐硕 《微处理机》2010,31(2):82-84
在飞行器概念及初步设计中,气动数据库起着非常重要的作用,利用它可以快速而经济地估算出飞行器结构设计中的各种气动特性.根据飞行器设计和飞行仿真的实际需要,基于COM/DCOM技术,采用模块化的设计方法,完成了飞行器气动数据库系统框架的设计与开发.实现了飞行器气动数据的管理,同时也实现了飞行器数据在局域网环境下多个应用程序或用户共享.  相似文献   

12.
刘岚  方宗德  侯宇 《计算机仿真》2006,23(3):49-51,148
用计算流体力学的数值仿真方法对微扑翼飞行的非定常空气动力学问题进行了建模与仿真研究。在对昆虫扑翼飞行运动的仿生模拟基础上,建立了简化的扑翼运动二维翼型的运动学与空气动力学模型。利用任意拉格朗日欧拉(ALE)有限元方法求解出N-S方程的数值解,将流场仿真结果与实验进行了对比,并分析了扑翼运动产生的前缘漩涡对升力的作用。文中的建模、分析方法和结论对微扑翼飞行器的分析设计和应用提供了一定的理论依据。  相似文献   

13.
《Advanced Robotics》2013,27(5-6):409-435
We present a computational study on the aerodynamic performance of flexible wings aiming to facilitate the design of insect-inspired flapping-wing micro air vehicles (FMAVs). First, we propose using a two-dimensional mechanical model for a flapping wing to help understand the mechanism underlying its unsteady deformation when exposed to aerodynamic and inertia forces. This is followed by comparative analyses of both flexible wings and fixed wings in flight. In particular, a 'swaying propulsion' mechanism is proposed to mimic the flapping of the winged insects, and a new concept of 'initial torsion angle' is introduced to provide an equivalent means to account for the asymmetry of the torsional stiffness of the thorax muscle during upstroke and downstroke flapping. Subsequently, the aerodynamic forces and power requirements for a bumblebee's wings under various flight conditions are systematically examined. Our results indicate that flexibility of the wings largely contributes to the high lifts and that gliding forces play a significant role in improving flight performance, suggesting that optimal design of the structure and flapping motions of wings could achieve improved efficiency in FMAVs. These studies promote a brand new design concept for future insect-inspired FMAVs.  相似文献   

14.
Flapping flight for biomimetic robotic insects: part I-system modeling   总被引:2,自引:0,他引:2  
This paper presents the mathematical modeling of flapping flight inch-size micro aerial vehicles (MAVs), namely micromechanical flying insects (MFIs). The target robotic insects are electromechanical devices propelled by a pair of independent flapping wings to achieve sustained autonomous flight, thereby mimicking real insects. In this paper, we describe the system dynamic models which include several elements that are substantially different from those present in fixed or rotary wing MAVs. These models include the wing-thorax dynamics, the flapping flight aerodynamics at a low Reynolds number regime, the body dynamics, and the biomimetic sensory system consisting of ocelli, halteres, magnetic compass, and optical flow sensors. The mathematical models are developed based on biological principles, analytical models, and experimental data. They are presented in the Virtual Insect Flight Simulator (VIFS) and are integrated together to give a realistic simulation for MFI and insect flight. VIFS is a software tool intended for modeling flapping flight mechanisms and for testing and evaluating the performance of different flight control algorithms.  相似文献   

15.
微型扑翼飞行器(FMAV)由于微型化和采用扑翼飞行方式的特征,许多传统理论和设计方法不再完全适用,相关理论和技术仍在不断地发展中,所以对国内外相关理论和技术的发展现状进行及时跟踪和研究,具有非常重要的参考意义;通过调查研究,介绍了与微型扑翼飞行器控制系统有关的低雷诺数非定常空气动力学、控制系统数学模型、控制方案和控制方法等的研究进展,总结出了微型扑翼对飞行器控制系统的设计要求,控制系统的特点和需要解决的关键问题,并展望了未来发展趋势。  相似文献   

16.
The quest for finding optimum solutions to engineering problems has been existing for a long time. In the last decade several optimization techniques have been applied to the structural design of composite wing structures. Generally many of these proposed procedures have dealt with different disciplines such as aerodynamics, structures, or dynamics separately. However an aeronautical design process is multidisciplinary since it involves strong couplings and interactions among, for instance, aerodynamics, dynamics, flight mechanics and structures. The main problem in a multidisciplinary aircraft design is usually the development of an efficient method to integrate structures or structural properties, which can be considered both as “global” and “local” design variables. This paper describes an integrated aerodynamic / dynamic / structural optimization procedure for a composite wing-box design. The procedure combines an aeroelastic optimization of a composite wing based on a general purpose optimizer such as the Sequential Quadratic Programming (SQP) and a composite optimization using Genetic Algorithm (GA). Both the optimizations are implemented through a hybrid multilevel decomposition technique.  相似文献   

17.
Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some ingenious flapping-wing robots have been designed during the past two decades, development and application of autonomous flapping-wing robots are less successful and still require further research. Here, we report the development of a servo-driven bird-like flapping-wing robot named USTBird-I and its application in autonomous airdrop. Inspired by birds, a camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, respectively. Computational fluid dynamics simulations and actual flight tests show that this bionic design can significantly improve the gliding performance of the robot, which is beneficial to the execution of the airdrop mission. Finally, a vision-based airdrop experiment has been successfully implemented on USTBird-I, which is the first demonstration of a bird-like flapping-wing robot conducting an outdoor airdrop mission.   相似文献   

18.
The development of flapping wing micro air vehicles (MAVs) has yielded remarkable progress over the last decades. Achieving high component stiffness is often in conflict with low weight requirement, which is highly desirable for longer flight time and higher payload. Moreover, vibration originated predominantly from the wings, gears and frames excitations, may compromise the flapping wing MAV’s stability and fatigue life. In order to improve the vehicle’s efficiency and performance, optimization of these various parameters is necessary. In this work, we present the structural optimization of a flapping wing micro air vehicle. We focus particularly on the gearbox optimization using Simulia Tosca Structure in Abaqus, which is a robust tool for designing lightweight, rigid and durable components. Various numerical experiments have been conducted towards optimizing the components’ topology, aimed at increasing the stiffness and reducing weight. The finding and results provide a better understanding of the optimal design topology for a spur gear among other structural components used in MAVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号