首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
TCR stimulation results in the tyrosine phosphorylation of a number of cellular substrates. We have recently identified a 70-kDa protein tyrosine kinase, ZAP-70, which associates with the human TCR zeta-chain after TCR stimulation. We report here the isolation and sequence of a cDNA clone that encodes murine ZAP-70. Murine and human ZAP-70 share 93% amino acid identity and are homologous to the 72-kDa protein tyrosine kinase Syk. Syk has been implicated in the signal transduction pathways of the B cell membrane Ig and high affinity IgE receptors, Fc epsilon RI. In addition, we examined the tissue distribution of ZAP-70 and Syk in human and murine thymocyte subsets, B cells, and peripheral T cell subsets. ZAP-70 protein is expressed in all major thymocyte populations, with the level of expression being comparable to that found in both CD4+ and CD8+ peripheral T cells. Although Syk protein is also present in all thymocyte subsets, expression of Syk protein is down-regulated threefold to fourfold in peripheral T cells. In contrast to ZAP-70, expression of Syk is 12- to 15-fold higher in peripheral B cells when compared with peripheral T cells. In addition, whereas T cell stimulation results in down-regulation of Lck, no significant change in ZAP-70 or Syk protein is detected. Finally, we provide evidence that both ZAP-70 and Syk can associate with the TCR after TCR stimulation. With the use of a heterologous expression system, we show that, like ZAP-70, Syk is dependent upon a Src-family protein tyrosine kinase for association with the phosphorylated zeta-chain. Thus, the differential expression of these kinases suggests the possibility of different roles for ZAP-70 and Syk in TCR signaling and thymic development.  相似文献   

2.
The function and the outside-in signaling pathways of alphaIIbbeta3 were examined in relation to cell adhesion using a megakaryoblastic leukemia cell line, CMK. After 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment, the cells adhered to the culture plate and underwent megakaryocytic differentiation with expression of alphaIIbbeta3. Binding of soluble fibrinogen to the cells via alphaIIbbeta3 was dependent on cell adhesion. Cell detaching reduced the affinity of this integrin for soluble fibrinogen, although its surface expression was almost unchanged. In contrast, detached cells became tightly adherent to the fibrinogen-coated plate (solid-phase fibrinogen). The same ligand, fibrinogen, present either in soluble or solid-phase form, triggered differential signaling pathways mediated by alphaIIbbeta3. By the stimulation with soluble fibrinogen, Syk was tyrosine-phosphorylated but FAK was dephosphorylated, whereas solid-phase fibrinogen promptly caused tyrosine phosphorylation of FAK followed by delayed phosphorylation of Syk. In addition, the binding of soluble fibrinogen to the cells adherent to fibrinogen-coated plate resulted in tyrosine phosphorylation of integrin beta3 and a complex formation of integrin beta3 with Syk. This implies the cooperation of both soluble and solid-phase fibrinogen-mediated signaling pathways.  相似文献   

3.
Cross-linking of the T cell antigen receptor (TCR)-CD3 complex induces rapid tyrosine phosphorylation and activation of Src (Lck and Fyn) and Syk (Syk and Zap-70) family protein tyrosine kinases (PTKs) which, in turn, phosphorylate multiple intracellular substrates. Cbl is a prominent PTK substrate suggesting a pivotal role for it in early signal transduction events. However, the regulation of Cbl function and tyrosine phosphorylation in T cells by upstream PTKs remains poorly understood. In the present study, we used genetic and biochemical approaches to demonstrate that Cbl directly interacts with Syk and Fyn via its N-terminal and C-terminal regions, respectively. Tyr-316 of Syk was required for the interaction with Cbl as well as for the maximal tyrosine phosphorylation of Cbl. However, both wild-type Syk and Y316F-mutated Syk phosphorylated equally well the C-terminal fragment of Cbl in vivo, suggesting the existence of an alternative, N terminus-independent mechanism for the Syk-induced tyrosine phosphorylation of Cbl. This mechanism appears to involve Fyn, since, in addition to its association with the C-terminal region of Cbl, Fyn also associated with Syk and enhanced the Syk-induced tyrosine phosphorylation of Cbl. These findings implicate Fyn as an adaptor protein that facilitates the interaction between Syk and Cbl, and suggest that Src and Syk family PTKs coordinately regulate the tyrosine phosphorylation of Cbl.  相似文献   

4.
One characteristic of B cells that accumulate during chronic lymphocytic leukemia (CLL) is their highly heterogeneous functional responses to B cell receptor (BCR) stimulation. Leukemic B cells with very poor responses have defective rapid tyrosine phosphorylation of numerous substrates, especially phospholipase C (PLC)gamma, as well as a defective calcium elevation on BCR stimulation. This points to a defect in BCR-associated protein tyrosine kinase (PTK). We investigated whether a defect in Syk, a PTK that is pivotal in coupling BCR to downstream signaling events, could account for these alterations. Syk tyrosine phosphorylation triggered by BCR ligation was severely impaired in B-CLL cells with low calcium responses to anti-mu stimulation. Syk associations were also defective, as concomitant tyrosine phosphorylation of a Syk-associated 145 kDa protein comigrating with PLCgamma-2 was only detected in responding B-CLL cells. By contrast, we found similar expression of the kinase regardless of B-CLL cell responsiveness. These results are consistent with the possibility that very proximal BCR signaling elements in some B-CLL cells are unable to connect with downstream biochemical events dominated by tyrosine phosphorylation and the potential docking function of Syk PTK.  相似文献   

5.
The YTA-1 anti-LFA-1 alpha mAb activates protein tyrosine kinase (PTK), augments NK cytotoxicity, and induces proliferation of fresh CD3- large granular lymphocytes. We demonstrate here that LFA-1 is physically associated in the YT human NK-like cell line cells with a PTK(s) that is distinct from Src family PTKs such as Lck, Fyn, or Lyn. In vitro kinase assays revealed similar association of protein kinase activity with LFA-1 in normal CD3- large granular lymphocytes. Tyrosine phosphorylation of the proteins associated with LFA-1 drastically increased in YT cells after stimulation with NK-sensitive K562 cells but not with NK-resistant P815 cells. Furthermore, pretreatment of YT cells with TS1/22 anti-LFA-1 alpha and TS1/18 anti-LFA-1 beta mAbs abrogated not only the cytotoxicity against K562 cells but also an increase in tyrosine phosphorylation of LFA-1-associated molecules induced by K562 stimulation. These results provide biochemical evidence that the PTK(s) associated with LFA-1 is involved in the signal transduction that follows the recognition of NK target cells.  相似文献   

6.
During the development of the neuromuscular junction (NMJ), motoneurons grow to the muscle cell and the nerve-muscle contact triggers the development of both presynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of acetylcholine receptors (AChRs). Previous studies have shown that the activation of tyrosine kinases and the local assembly of an actin-based cytoskeletal specialization are involved in the development of both types of specializations. To understand the link between tyrosine phosphorylation and the assembly of the cytoskeleton, we examined the localization of cortactin in relationship to synaptic development. Cortactin is a 80/85 kD F-actin binding protein and is a substrate for tyrosine kinases. It contains a proline-rich motif and an SH3 domain and is localized at sites of active F-actin assembly. Using a monoclonal antibody against cortactin, its localization at developing NMJs in culture was observed. To understand the spatial and temporal relationship between cortactin and developing synaptic structures, cultured muscle cells and spinal neurons from Xenopus embryos were treated with beads coated with heparin-binding growth-associated molecule to induce the formation of AChR clusters and SV clusters and the localization of cortactin was followed by immunofluorescence. In untreated muscle cells, cortactin is often co-localized with spontaneously formed AChR clusters. After cells were treated with beads, cortactin became localized at bead-induced AChR clusters at their earliest appearance (1 h after the addition of beads). This association was most reliably detected at the early stage of the clustering process. On the presynaptic side, cortactin localization could be detected as early as 10 min after the bead-neurite contact was established. Cortactin-enriched contacts later showed concentration of F-actin (at 1 h) and clusters of SVs (at 24 h). These data suggest that cortactin mediates the local assembly of the cytoskeletal specialization triggered by the synaptogenic signal on both nerve and muscle.  相似文献   

7.
Previous studies demonstrated that Syk protein-tyrosine kinase (Syk) is activated by thrombin in platelets. To elucidate the function of Syk in platelets, we have biochemically examined the intracellular location of Syk and the molecules associated with Syk, following platelet activation. In human platelets, thrombin induces the relocation of Syk to the cytoskeletal fraction presumably via Syk tyrosine phosphorylation. Relocated Syk is associated with the actin filament network, and the early phase (10-90 s) of this association can be partially inhibited by the pretreatment of platelets with cytochalasin D, an inhibitor of actin polymerization. Upon thrombin stimulation, Syk becomes associated with Fak as demonstrated by co-immunoprecipitation. The association of both kinases can be inhibited by pretreatment of platelets with cytochalasin D. Interestingly, reconstitution experiments, using COS cells transfected with various porcine Syk mutants, revealed that the kinase domain, but not the kinase activity, of Syk is required for the association of Syk with the actin filament network. These findings suggest that thrombin-induced association of Syk with Fak correlates with the state of actin polymerization, and may play an important role in platelet activation.  相似文献   

8.
The Syk protein-tyrosine kinase is expressed in many hematopoietic cells and is involved in signaling from various receptors for antigen and Fc portions of IgG and IgE. After cross-linking of these receptors, Syk is rapidly phosphorylated on tyrosine residues. We have previously reported that Syk expressed in COS cells is predominantly phosphorylated at both Tyr518 and Tyr519 at its putative autophosphorylation site. In this study, we have examined the role of each of these two residues for the catalytic activity of Syk in vitro and for the Syk-induced phosphorylation of cellular proteins in intact cells. Mutation of either residue had minor effects on the catalytic activity of Syk, and even the double mutant [F518, F519]Syk was about 60% as active as the wild-type enzyme. In intact cells, however, all three mutants consistently failed to induce the extensive tyrosine phosphorylation of cellular proteins typically observed with wild-type Syk. We have recently shown that the doubly phosphorylated Y518/Y519 site is also the site for association of Syk with the SH2 domain of the Lck kinase, which suggests that although phosphates at Y518/Y519 may enhance the catalytic activity of Syk, its interaction with Src family protein-tyrosine kinases is at least equally important for the induction of downstream substrate phosphorylation.  相似文献   

9.
Aggregation of the FcepsilonRI, a member of the immune receptor family, induces the activation of proteintyrosine kinases and results in tyrosine phosphorylation of proteins that are involved in downstream signaling pathways. Here we report that Pyk2, another member of the focal adhesion kinase family, was present in the RBL-2H3 mast cell line and was rapidly tyrosine-phosphorylated and activated after FcepsilonRI aggregation. Tyrosine phosphorylation of Pyk2 was also induced by the calcium ionophore A23187, by phorbol myristate acetate, or by stimulation of G-protein-coupled receptors. Adherence of cells to fibronectin dramatically enhanced the induced tyrosine phosphorylation of Pyk2. Although Src family kinases are activated by FcepsilonRI stimulation and tyrosine-phosphorylate the receptor subunits, the activation and tyrosine phosphorylation of Pyk2 were downstream of Syk. In contrast, tyrosine phosphorylation of Pyk2 by stimulation of G-protein-coupled receptors was independent of Syk. Therefore, the FcepsilonRI-induced tyrosine phosphorylation of Pyk2 is downstream of Syk and may play a role in cell secretion.  相似文献   

10.
Erythropoietin (Epo) regulates the proliferation and differentiation of erythroid cells through interaction with a cell surface receptor (EpoR) that belongs to the cytokine receptor family. The Jak2 tyrosine kinase was previously shown to bind to the EpoR, to be activated upon Epo stimulation, and to play a critical role in Epo-induced proliferation. However, little is known about the role of other tyrosine kinases in Epo signaling. In this paper, we examined whether Syk was involved in EpoR activation. Coimmunoprecipitation experiments showed that the phosphorylated EpoR was associated with the Syk kinase in activated UT7 cells. The interaction of Epo with its receptor led to an increased kinase activity. The use of recombinant Syk Src homology 2 (SH2) domains expressed in tandem or individually revealed that both N- and C-SH2 domains of Syk participated in EpoR binding with a major contribution of the C-terminal SH2 domain. Far Western blotting further indicated that Syk directly binds to the EpoR and that the interaction of Syk with EpoR only occurred after Epo activation. These data suggest that phosphorylation of EpoR on tyrosine residues may mediate Syk binding to the receptor through interaction between the two SH2 domains of Syk and tyrosines of the receptor. We propose that in addition to Jak2, Syk protein kinase may be a component of EpoR signaling.  相似文献   

11.
The actin filament-disrupting agent cytochalasin D strikingly increased tyrosine phosphorylation of a 75 kDa protein (p75) in rabbit aortic vascular smooth muscle cells. The microtubule-disrupting agent, colchicine had no effect on p75 tyrosine phosphorylation. Cytochalasin D also stimulated p75-directed kinase activity as determined by kinase assays of anti-Tyr(P) immunoprecipitates. Cytochalasin D stimulated tyrosine phosphorylation of the F-actin-binding protein, p80/85 cortactin, but p75 was not immunologically related either to cortactin, the phosphatidylinositol 3'-kinase p85 alpha subunit, or the 80 kDa isoform of caldesmon. These results suggest that p75 may represent a cytochalasin D-inducible kinase or kinase-associated component and provide evidence for the existence of a potentially novel kinase pathway regulated by disruption of the actin cytoskeleton.  相似文献   

12.
N-syndecan (syndecan-3) was previously isolated as a cell surface receptor for heparin-binding growth-associated molecule (HB-GAM) and suggested to mediate the neurite growth-promoting signal from cell matrix-bound HB-GAM to the cytoskeleton of neurites. However, it is unclear whether N-syndecan would possess independent signaling capacity in neurite growth or in related cell differentiation phenomena. In the present study, we have transfected N18 neuroblastoma cells with a rat N-syndecan cDNA and show that N-syndecan transfection clearly enhances HB-GAM-dependent neurite growth and that the transfected N-syndecan distributes to the growth cones and the filopodia of the neurites. The N-syndecan-dependent neurite outgrowth is inhibited by the tyrosine kinase inhibitors herbimycin A and PP1. Biochemical studies show that a kinase activity, together with its substrate(s), binds specifically to the cytosolic moiety of N-syndecan immobilized to an affinity column. Western blotting reveals both c-Src and Fyn in the active fractions. In addition, cortactin, tubulin, and a 30-kDa protein are identified in the kinase-active fractions that bind to the cytosolic moiety of N-syndecan. Ligation of N-syndecan in the transfected cells by HB-GAM increases phosphorylation of c-Src and cortactin. We suggest that N-syndecan binds a protein complex containing Src family tyrosine kinases and their substrates and that N-syndecan acts as a neurite outgrowth receptor via the Src kinase-cortactin pathway.  相似文献   

13.
The erythroleukemic cell line K562 can undergo further differentiation in erythroid or megakaryocytic lineage depending on the nature of the stimulus. Phorbol ester (PMA) stimulates megakaryocytic development whereas hemin promotes erythroid differentiation of these cells. We have examined the effect of PMA and hemin on the expression of the Kell blood group and CD10 antigens, two related proteins that belong to a family of membrane-bound neutral metalloendopeptidases. We show here that differentiation of K562 cells by PMA in the megakaryocytic lineage results in abolishment of Kell mRNA accumulation and protein expression and, in parallel, the induction of CD10 mRNA accumulation, protein expression, and enzymatic activity. Conversely, differentiation of these cells by hemin in the erythroid lineage is accompanied by an up-regulation of Kell mRNA and protein expression, with no changes in CD10 mRNA and protein expression. Thus, CD10 and Kell can be regarded as specific markers of the differentiation of K562 cells in the megakaryocytic and erythroid lineages, respectively.  相似文献   

14.
The mechanism of human platelet activation by thrombopoietin (TPO) was investigated in vitro. We found that rHuTPO stimulated thromboxane A2 formation and serotonin secretion, despite the absence of shape change and aggregation. Blockade of the arachidonic acid pathway did not inhibit rHuTPO-induced platelet secretion. rHuTPO stimulated the tyrosine phosphorylation of 64, 80/85, 95, 130 and 140 kDa proteins, but phosphoproteins of 100-105 and 125 kDa obtained when platelets aggregated in the presence of thrombin were absent. rHuTPO stimulated and potentiated the thrombin-induced tyrosine phosphorylation of a 80 kDa protein identified as the cortical actin-associated protein, p80/85 cortactin. When platelets were aggregated in the presence of rHuTPO and fibrinogen, cortactin phosphorylation was enhanced as compared to rHuTPO alone. Treatment with RGDS or cytochalasin D respectively reduced or abolished cortactin tyrosine phosphorylation. This confirms the existence of fibrinogen binding-dependent and independent pools of phosphorylated cortactin, both requiring intact actin polymerization. Cytoskeleton-binding proteins may be implicated in in vitro platelet activation by rHuTPO.  相似文献   

15.
Protein tyrosine phosphorylation accompanies the integrin-mediated cell to substratum adhesion, and is essential for the progression of G1/S phase of the cell-cycle in normal fibroblasts. To examine how cellular protein tyrosine phosphatase (PTPase) activity is involved in regulating the adhesion-dependent protein tyrosine phosphorylation, we employed fibroblast cells bearing an active form of a protein tyrosine kinase (PTK), v-Src. We found that the v-Src induced tyrosine phosphorylation in certain proteins such as tensin, talin, p120, p80/85 (cortactin) and paxillin was greatly reduced when the cell to substratum adhesion was lost. Readhesion of the cells onto fibronectin restored these phosphorylation events, while this was inhibited by the addition of RGD peptide. The kinase activity of the v-Src was unchanged by the loss of cell to substratum adhesion. On the other hand, treatment with a protein tyrosine phosphatase inhibitor vanadate caused much the same increase in the v-Src-mediated cellular tyrosine phosphorylation between cells adhered to the culture environments and cells kept in suspension. These data suggest that PTPase(s) appears to be more critical than the v-Src PTK in determining the cell adhesion-dependent protein tyrosine phosphorylation. Moreover, most of the protein tyrosine phosphorylations that are mediated by the v-Src but still dependent on the cell adhesion were indeed greatly reduced during an anchorage-independent growth of v-Src cells. Thus our data collectively indicate that the v-Src induced high level of tyrosine phosphorylation in certain types of proteins are still under the control of the integrin(s) or the cell adhesion to culture substratum, and most of these adhesion-regulated high levels of tyrosine phosphorylations are not essential for the transformed phenotype.  相似文献   

16.
Infection of epithelial cells by two biovars of Chlamydia trachomatis results in the tyrosine phosphorylation of several host proteins. The most prominent change in host protein tyrosine phosphorylation involves a complex of proteins with molecular masses of 75 to 85 kDa (pp75/85) and 100 kDa (pp100). The C. trachomatis-induced tyrosine phosphorylation of pp75/85 and pp100 is observed in several cell lines, including epithelial cells, fibroblasts, and macrophages. Subcellular fractionation and detergent solubility properties of pp75/85 are consistent with its association with the cytoskeleton. Phosphoamino acid analysis demonstrates that the pp75/85 complex is phosphorylated on both tyrosine and serine residues. Immunofluorescence studies of chlamydia-infected cells by using fluorescein isothiocyanate-phalloidin and antibodies to phosphotyrosine and cortactin demonstrate that tyrosine-phosphorylated proteins, as well as cortactin, are localized to the chlamydial vacuole and that this process is facilitated by actin.  相似文献   

17.
Cortactin is an actin-binding protein that contains several potential signaling motifs including a Src homology 3 (SH3) domain at the distal C terminus. Translocation of cortactin to specific cortical actin structures and hyperphosphorylation of cortactin on tyrosine have been associated with the cortical cytoskeleton reorganization induced by a variety of cellular stimuli. The function of cortactin in these processes is largely unknown in part due to the lack of information about cellular binding partners for cortactin. Here we report the identification of a novel cortactin-binding protein of approximately 180 kDa by yeast two-hybrid interaction screening. The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction. Since this protein represents the first reported natural ligand for the cortactin SH3 domain, we designated it CortBP1 for cortactin-binding protein 1. CortBP1 contains two recognizable sequence motifs within its C-terminal region, including a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. Northern and Western blot analysis indicated that CortBP1 is expressed predominately in brain tissue. Immunofluorescence studies revealed colocalization of CortBP1 with cortactin and cortical actin filaments in lamellipodia and membrane ruffles in fibroblasts expressing CortBP1. Colocalization of endogenous CortBP1 and cortactin was also observed in growth cones of developing hippocampal neurons, implicating CortBP1 and cortactin in cytoskeleton reorganization during neurite outgrowth.  相似文献   

18.
We previously reported a new type of signal-transducing adaptor molecule, STAM, which was shown to be involved in cytokine-mediated intracellular signal transduction. In this study, we molecularly cloned a 110-kDa phosphotyrosine protein inducible by stimulation with interleukin 2 (IL-2). The 110-kDa molecule was found to be a human counterpart of mouse Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and to be associated with STAM. Tyrosine phosphorylation of Hrs is induced rapidly after stimulation with IL-2 and granulocyte-macrophage colony-stimulating factor as well as hepatocyte growth factor. The mutual association sites of Hrs and STAM include highly conserved coiled-coil sequences, suggesting that their association is mediated by the coiled-coil structures. Exogenous introduction of the wild-type Hrs significantly suppressed DNA synthesis upon stimulation with IL-2 and granulocyte-macrophage colony-stimulating factor, while the Hrs mutant deleted of the STAM-binding site lost such suppressive ability. These results suggest that Hrs counteracts the STAM function which is critical for cell growth signaling mediated by the cytokines.  相似文献   

19.
PURPOSE: The extracellular matrix serves as a structural support for the corneal stroma and mediates signaling events that regulate the intracellular environment of stromal keratocytes. We hypothesize that adhesion and injury mediate signal transduction events causing the phosphorylation of tyrosine residues of specific adhesion proteins and that phosphorylation is required for cellular adhesion and migration. METHODS: For the adhesion experiments; primary rabbit stromal fibroblasts were seeded and phosphorylation of tyrosine residues was followed from 1 min to 24 h. For the injury experiments, confluent primary cultures were rendered quiescent, wounded, and tyrosine phosphorylation was followed from 30 s to 6 h. The antibody (py-20) was used to detect proteins phosphorylated on tyrosine residues. We examined changes in the phosphorylation of focal adhesion kinase (FAK), paxillin and cortactin, using immunoprecipitation and Western blot analysis. RESULTS: In the adhesion experiments, the phosphorylation of a 68-kDa protein was detected after 1 min, and the phosphorylation of a 125-kDa protein was not detected until 15 min. These proteins were identified in re-probed blots as paxillin and FAK. In the injury experiments, FAK phosphorylation was detected within 30 s and remained elevated for 6 h when cells were cultured on fibronectin. Both FAK and paxillin phosphorylation were prominent after injury, but unlike FAK phosphorylation, paxillin phosphorylation decreased over time. Phosphorylation was prominent at the wound margin. After wound closure, it returned to background levels. Tyrosine kinase inhibitors, genistein and herbimycin, decreased the number of adherent cells and altered the rate of cell migration after injury, compared to control (DMSO alone). CONCLUSION: The results indicate that injury and cell-matrix interaction mediate the phosphorylation of specific adhesion proteins and that phosphorylation is required for wound repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号