首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Resistance to some (lipophilic) antifolates has been associated with P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). A possible relationship with non-P-gp MDR has not been established. We studied resistance to antifolates in SW-1573 human lung carcinoma cells, a P-gp overexpressing variant SW-1573/2R160 and a multidrug resistance protein (MRP) overexpressing variant SW-1573/2R120. In this study, thymidylate synthase (TS) inhibitors with different properties concerning the efficiency of membrane transport and the efficiency of polyglutamylation were tested for cross-resistance in SW-1573/2R120 and SW-1573/2R160 cells. Growth inhibition patterns in this cell line panel were measured by the Sulforhodamine B (SRB) assay. Resistance factors for TS inhibitors were: 2.4 and 0.4 for 5-fluorouracil (5FU), 18.8 and 8.8 for ZD1694, 17 and 0.7 for AG337, and 40 and 8.3 for BW1843U89 in SW-1573/2R160 and SW-1573/2R120, respectively. This study showed changes in the TS enzyme kinetics during the induction of doxorubicin resistance in both SW-1573 variants, resulting in 2-fold lower Km values for 2'-deoxyuridine-5'-monophosphate (dUMP) in both resistant variants compared to the parental cell line. TS activity, TS protein induction and TS mRNA expression all had 2-fold increased in the SW-1573/2R120 compared to the SW-1573/2R160. 3H-MTX influx was 2-fold lower in SW-1573/2R160 cells compared to SW-1573/2R120 and SW-1573 cells. In the SW-1573/2R160 cell line, an aberrant intracellular trafficking towards the target TS was observed, compared to SW-1573/2R120 and SW-1573 cells as measured by the TS in situ assay. The rate of TS inhibition by the TS inhibitors used in this study was similar in all cell lines. In conclusion, collateral sensitivity to 5FU and the lipophilic AG337 and cross-resistance to other antifolates were observed in non-P-gp MDR SW-1573/2R120 cells, as well as resistance to all antifolates in P-gp SW-1573/2R160 cells. The mechanism of resistance in SW-1573/2R160 cells possibly involves reduced influx and changes in intracellular trafficking routes. For the SW-1573/2R120 cell line, several changes related to the TS enzyme possibly play a role in the observed cross-resistance and collateral sensitivity pattern.  相似文献   

3.
The aim of this study was to determine the mechanism of cell death associated with the preferential killing of multidrug-resistant (MDR) cells by the glycolytic inhibitor 2-deoxy-D-glucose (2DG) in a range of MDR human KB carcinoma cell lines selected in different drugs. The D10 values for KB-V1, KB-C1 and KB-A1 (selected in vinblastine, colchicine and doxorubicin respectively) were 1.74, 1.04 and 0.31 mM, respectively, compared with 4.60 mM for the parental cell line (KB-3-1). The mechanism of cell death was identified as apoptosis, based on nuclear morphology, annexin V binding and poly(ADP-ribose) polymerase (PARP) cleavage. 2DG induced apoptosis in the three MDR cell lines in a dose- and time-dependent manner and did not induce necrosis. PARP cleavage was detected in KB-C1 cells within 2 h of exposure to 50 mM 2DG and slightly later in KB-A1 and KB-V1 cells. The relative levels of 2DG sensitivity did not correlate with the levels of multidrug resistance or with the reduced levels of the glucose transporter GLUT-1 in these cells. We speculate that a 2DG-stimulated apoptotic pathway in MDR KB cells differs from that in normal KB cells.  相似文献   

4.
Human ovarian cancer cell line SKOV3 was grown during a period of four months in the presence of increasing concentrations of cisplatin (25-100 ng/ml). In the course of this treatment, the cells exhibited dramatic changes in morphology, including reduction in cell size, loss of cellular projections and clustering. This was accompanied by the appearance of P-glycoprotein (Pgp) on the cell membrane, as detected by flow cytometry and immunochemistry methods using the anti-Pgp monoclonal antibodies MRK16 and C219. The new cell line, designated SKOV3/CIS, was also resistant to alkylating agents, such as chlorambucil, similarly to the parental SKOV3 cells. In addition, it also acquired resistance to classical multidrug resistance drugs, such as doxorubicin, taxol and actinomycin D. Verapamil enhanced the sensitivity of SKOV3/CIS to doxorubicin (260-fold), in conformity with the proposed mechanism of Pgp in multidrug resistance (MDR), but it did not potentiate cisplatin cytotoxicity in SKOV3/CIS cells. Our results suggest that cisplatin can cause Pgp expression, and that both cisplatin-resistance and Pgp-mediated MDR phenotypes can coexist in some tumor types. Although Pgp does not appear to be responsible for cisplatin resistance, exposure to cisplatin can lead to the development of MDR phenotype, a complication that should be considered in clinical situations, especially in the chemotherapy of ovarian cancer.  相似文献   

5.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

6.
7.
Superantigen-activated T cells can be targeted by monoclonal antibodies (mAb) to lyse MHC class II negative tumour cells. In this study we determined the susceptibility of the T-lymphoblastoid leukaemic cell line CCRF-CEM and its multidrug resistant sublines CCRF VCR100, CCRF VCR1000 and CCRF ADR5000 to lysis by monoclonal antibody-targeted and superantigen-activated T cells (superantigen-dependent cellular cytotoxicity, SDCC). A recombinant fusion protein of protein A and the superantigen Staphylococcus enterotoxin A (SEA) was used together with the mAbs anti-CD7, anti-CD38, anti-CD45RA and 4E3 (anti-P-glycoprotein) to correlate susceptibility to SDCC with expression of the MDR1-gene product. Our results demonstrated SDCC to be independent of MDR1-gene expression. This was further confirmed by blocking the function of Pgp in the leukaemic cell lines with a cyclosporine A derivative, which had no influence on SDCC. As expected, expression of the respective cell surface antigens on target cells had a strong impact on SDCC, although other factors seem to influence efficiency of SDCC as well.  相似文献   

8.
GF120918, at 250 ng/ml, increased the sensitivity of a P-glycoprotein (P-gp)-mediated multidrug resistant (MDR) small cell lung cancer cell line (H69/LX4) to the P-gp substrates, paclitaxel, taxotere, vinblastine, vinorelbine, daunorubicin and etoposide to levels which were either greater (in the case of etoposide) or close to that of the parent cell line (H69/P). This was achieved in spite of the great variation in the levels of resistance of the MDR cell line for the various anti-cancer drugs tested. These data suggest that GF120918 is a potent antagonist of P-gp mediated multidrug resistance, even in the case of high levels of resistance, as was the case with paclitaxel and taxotere (2560 and 2215 fold more than the sensitive parent cell line respectively).  相似文献   

9.
A drug-resistant cell line (EAC/Dox) was developed by repeated exposure of Ehrlich ascites carcinoma cells to Doxorubicin (Dox) in vivo in male albino Swiss mice (6-8 weeks old). The weekly i.p. injections of Dox to mice (2 or 4 mg/kg/week for 4 months) gave rise to Dox-resistant cell line EAC/Dox, which displayed typical multidrug resistant (MDR) features of cross-resistance to a number of structurally and functionally unrelated drugs like doxorubicin, vinblastine and cisplatin. Moreover, the EAC/Dox cell line had lower drug accumulation than drug-sensitive (EAC/S) cells. Study of Western blots and immunofluorescence revealed that P-glycoprotein 170 kDa (P-gp) was absent in EAC/Dox cells. The drug resistance appeared to be due to the presence of a higher level of reduced glutathione (GSH) and glutathione S-transferase (GST) in EAC/Dox cells than in drug-sensitive (EAC/S) cells. The two structurally similar hydroxamic acid derivatives, i.e. oxalyl bis(N-phenyl)hydroxamic acid (X1) and succinyl bis(N-phenyl)hydroxamic acid (X2), having very low in vitro toxicity (IC50 value 250 microg/ ml), were investigated for their efficacy to reverse MDR. The compound X1 was able to reverse the effect of MDR and reduce GST in EAC/Dox cells. The compound X2 had no ability to reverse the effect of MDR. Further study on the mechanism of glutathione depletion and the resistance modifying property of X1 on other cell lines is warranted.  相似文献   

10.
The effects of long-term tamoxifen exposure on cell growth and cell cycle kinetics were compared between oestrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) cell lines. In the MCF-7 cell line, prolonged tamoxifen exposure (0.5 mumol/l for > 100 days) blocked cells in G0-G1 of the cell cycle, and slowed the doubling time of cells from 30 to 59 h. These effects corresponded to an increase in the cellular accumulation of tamoxifen over time [mean area under concentration curve (AUC) = 77.92 mumoles/10(6)/cells/day]. In contrast, in the MDA-MB-231 cell line, long-term tamoxifen exposure had no obvious effect on the doubling time, and reduced cellular tamoxifen accumulation (mean AUC = 50.50 mumoles/10(6)/cells/day) compared to the MCF-7 cells. Flow cytometric analysis of MDA-MB-231 cells demonstrated that a new tetraploid clone emerged following 56 days of tamoxifen exposure. Inoculation of the MDA-MB-231 tetraploid clone and MDA-MB-231 wildtype cells into the opposite flanks of athymic nude mice resulted in the rapid growth of tetraploid tumours. The tetraploid tumours maintained their ploidy following tamoxifen treatment for nine consecutive serial transplantations. Histological examination of the fifth transplant generation xenografts revealed that the tetraploid tumour had a 25-30 times greater mass, area of haemorrhage and necrosis, a slightly higher mitotic index and was more anaplastic than the control neoplasm. The control wildtype MDA-MB-231 tumours maintained a stable ploidy following tamoxifen treatment until the eighth and ninth transplantation, when a tetraploid population appeared, suggesting that tamoxifen treatment may select for this clone in vivo. These studies suggest that prolonged tamoxifen exposure may select for new, stable, fast growing cell clones in vitro as well as in vivo.  相似文献   

11.
One of the most important forms of drug resistance in acute myeloid leukemia is the multidrug resistance (MDR) phenotype, which is characterized by the expression of the MDR1 gene product, P-glycoprotein. Although a number of factors affect MDR1 gene expression, the genetic events that "switch on" the human MDR1 gene in tumor cells that were previously P-glycoprotein negative have remained elusive. Here, we report evidence that the methylation status of the human MDR1 promoter may serve as a basis for this "switch." Based on Southern analysis using methylation-sensitive and methylation-insensitive restriction enzymes, a tight correlation was found between MDR phenotype and demethylation of the 5' region of the MDR1 gene in a human T cell leukemia cell line. Similar results were obtained from the analysis of P-glycoprotein-positive and P-glycoprotein-negative samples of chronic lymphocytic leukemia. Treatment of the cell lines with the demethylating agent 5'-azadeoxycytidine altered the methylation pattern of the MDR1 promoter in P-glycoprotein-negative cells to resemble that of P-glycoprotein-positive cells and activated the promoter such that MDR1 mRNA was now detectable. Treatment also resulted in an increased resistance to epirubicin and decreased daunomycin accumulation, both of which were reversible by verapamil, a characteristic of the classical MDR phenotype in cells expressing P-glycoprotein. These results suggest that the MDR phenotype may be acquired as a result of changes in methylation of the MDR1 promoter.  相似文献   

12.
Overexpression of P-glycoprotein (Pgp) or MDR1 mRNA has been shown to be a negative prognostic factor for clinical outcome in acute myeloid leukemia (AML). However, resistance to chemotherapy also occurs in the absence of Pgp overexpression. Therefore, besides Pgp expression, we have assessed the expression of MRP, a novel drug transporter gene, along with the functional multidrug-resistant (MDR) phenotype of leukemic cells. These MDR parameters are correlated with clinical outcome in individual patients. We found functional changes in fresh leukemic cells from de novo or relapsed patients similar to those reported for tumor cell lines with the MDR phenotype. These changes were reduced drug accumulation as assessed with radiolabeled doxorubicin (factor 1.6), daunomycin (factor 1.13), and vincristine (factor 1.6) in patients who were refractory to the combination treatment of 1-beta-D-arabinofuranosylcytosine (ara-C) and daunomycin or mitoxantrone as opposed to patients who had complete responses. Also, the intracellular distribution of doxorubicin fluorescence (nuclear/cytoplasmic ratio), as assessed with laser scan microscopy, was reduced 1.4-fold in blasts from refractory patients. Based on historically known clinical response to single-agent daunomycin or ara-C in the group of responding de novo AML patients, we have set a threshold level such that a defined part of the samples that had the highest drug accumulation or nuclear to cytoplasmic ratios were above this threshold value. This allowed discrimination between patients responding to daunomycin from those who were refractory to this drug. By using this threshold level, in the refractory group clinical resistance corresponded with high sensitivity with a resistant phenotype. A similar threshold was set for the data of the in vitro ara-C sensitivity test. By combining both assays for all individual patients, clinical refractoriness as well as sensitivity could be predicted with high accuracy. There appeared to be no stringent relationship between the functional MDR phenotype with expression of either Pgp (fluorescence-activated cell sorting analysis) or MRP mRNA (RNase protection). However, by combining both parameters the functional MDR phenotype correlated with the overexpression of either one or both of the parameters in 94% of the samples studied. It is concluded that this combined overexpression in conjunction with functional changes for MDR drugs and ara-C reveal a correlation of MDR phenotype with clinical resistance to combination chemotherapy in AML patients and hereby may adequately predict clinical MDR in individual AML patients.  相似文献   

13.
We have previously demonstrated that within 24 h of exposure of the CEM/A7R cell line to epirubicin (EPI), MDR1 gene expression is induced. The aim of the current study was to investigate the role of cyclosporin A (CyA) and PSC 833, two biochemical modulators of the classical multidrug-resistant phenotype, in this model. CEM/A7R cells were exposed to EPI in the presence or absence of various concentrations of CyA or PSC 833. MDR1 expression was assessed using Northern blot analysis and quantitated using a phosphorimager. P-glycoprotein (P-gp) expression was analyzed by the determination of MRK16 binding using flow cytometry. P-gp function was measured in an assay of [3H]daunomycin accumulation. The coincubation of CyA or PSC 833 with EPI prevented the increase in MDR1 gene expression induced by EPI alone. This effect of the two modulators was dose dependent. Neither modulator alone had any significant effect on the expression of MDR1. In these experiments, changes in MDR1 expression correlated with changes in P-gp levels (based on MRK16 binding) and P-gp function. Thus, both PSC 833 and CyA appear to prevent the induction of MDR1 gene expression caused by the short-term exposure of CEM/A7R cells to EPI.  相似文献   

14.
The expression of membranous glycoprotein gp-170, cytoplasmic glutathione (GSH) and energy-related glucose-6-phosphate dehydrogenase (G-6-PD) in cultured normal urothelial cells and transitional cell carcinoma (TCC) cell lines was analyzed by flow cytometric and enzymatic methods. The chemosensitivity of these tumor cells to four major types of anticancer drugs, including cisplatin, thiotepa, methotrexate, 5-fluorouracil, adriamycin and vinblastine, was correlated with biological activities in TCC cell lines. The TCC cell lines displayed a general sensitivity to anticancer drugs with a low incidence of highly resistant cell lines (23%). The expression of multidrug resistance was not related to cellular differentiation or invasiveness of cancer cells. Only 24% of TCC cell lines had an elevated expression of gp-170, but their expression was not related to drug resistance. Increased cytoplasmic GSH and G-6-PD was observed in over 90 per cent of TCC cell lines, but no correlation with drug resistance and cellular differentiation was observed. The biological activities of GSH and G-6-PD were not related to the drug resistance of TCC. The low expression rate of gp-170 in TCC cells indicates that other mechanisms should be involved in the development of MDR in TCC cells.  相似文献   

15.
Inactivation of p53 gene and overexpression of MDR1 gene are both associated with drug resistance. Previous studies have suggested that p53 gene can modulate the expression activity of MDR1 gene promoter in a promoter-CAT system. In the present study, wild-type p53 gene cDNA was introduced into a multidrug-resistant cell line, KBv200, in which endogenous p53 gene is aberrant. In wt-p53 transfected cells, the expression of MDRI gene was significantly increased, accumulation of adriamycin (ADM) was decreased, and the sensitivity to vincristine (VCR), ADM and 5-fluorouracil (5-FU) was increased compared with the parent KBv200 cells. After treatment with ADM and VCR, the p53-transfectants were more susceptible to apoptosis. The results suggest that the increase in drug sensitivity of the cells may be, at least in part, due to p53-dependent apoptosis induced by anticancer agents.  相似文献   

16.
Resistance-modifying agents (RMAs) such as Verapamil have been proved to be effective in reversing multi-drug resistance (MDR) in many in vitro assays. In this study we have investigated the efficacy of Dex-Verapamil, the R-isomer of Verapamil, as a chemosensitizer in a murine leukemia cell line (P388) and in its resistant counterpart (P388/Dx) expressing a typical MDR phenotype. We have examined in vivo the effect of the co-administration of Dex-Verapamil and Doxorubicin in mice transplanted with P388 or P388/Dx cells. Mice treated with the combination of Doxorubicin plus RMA had a significant increase in survival rate as compared to controls; however, the effect was modest. On the contrary, in vitro Dex-Verapamil can enhance Doxorubicin cytotoxicity in P388/Dx cells with a much greater effect depending on the treatment scheme used, by increasing the intracellular content of drug. Taken together our data indicate that Dex-Verapamil can indeed increase the sensitivity to Doxorubicin in resistant cells, but the limited efficacy shown in vivo demonstrates that this phenomenon is strongly dependent on the treatment scheme used and on the maintenance of constantly elevated serum levels.  相似文献   

17.
OBJECTIVES: To clarify the role of the membranous glycoprotein gp-170 in renal cell carcinoma (RCC) cell lines and their multidrug resistant (MDR) sublines. and to correlate gp-170 with the natural and acquired drug resistance of these cell lines to anthracyclines. MATERIALS AND METHODS: The expression of gp-170 in five cultured RCC cell lines and serial RCC8701 MDR sublines was analysed by immunofluorescent flow cytometry. The chemosensitivity of these tumour cells to the anthracycline anticancer drugs adriamycin and epirubicin was measured using the microplate tetrazolium (MTT) cytotoxicity assay, and the results correlated with gp-170 expression. RESULTS: All six natural RCC cell lines showed a variably increased expression of gp-170, with the A704 and Caki-1 cell lines the highest. In contrast, gp-170 expression increased and then was suppressed in acquired MDR sublines of RCC8701 cultured in increasing concentrations of adriamycin. The A704 and Caki-1 cells were much more resistant to adriamycin and epirubicin than the A498, ACHN and RCC8701 cell lines, in parallel with the expression of gp-170. The resistant cell line cultured long-term in 800 ng/mL adriamycin, RCC8701/ADR800, was 122 times more resistant to adriamycin and 238 times more resistant to epirubicin than the parent cell line: the pattern differed from that in native RCC cell lines and was unrelated to the expression of gp-170. CONCLUSION: Membranous gp-170 plays an important role in MDR of native RCC cell lines, while acquired MDR cells have different mechanisms of obtaining drug resistance in addition to gp-170. This phenomenon may be applicable to the clinical treatment of patients newly diagnosed with RCC or those with disease refractory to chemotherapy.  相似文献   

18.
Hürthle cell carcinomas (HCC) of the thyroid are a variant of follicular thyroid tumors. In contrast to follicular thyroid carcinoma, HCC rarely take up radioiodine and frequently metastasize to the lymph nodes. Histologically they are indistinguishable from Hürthle cell adenomas except for evidence of invasion and metastasis. How these carcinomas develop and why they behave differently than other follicular tumors is not known. Although some differentiated thyroid cancer cell lines exist, none are from Hürthle cell tumors. We have established a well-differentiated thyroid cancer cell line from a metastasis of a HCC, designated XTC.UC1. In vitro, XTC cells display epitheloid morphology, grow with a population doubling time of 4.3 +/- 0.3 days, migrate, and invade through reconstituted basement membranes. The cells are immunoreactive for and release thyroglobulin, respond to thyrotropin (TSH) with increase of intracellular cyclic adenosine monophosphate (cAMP), proliferation, and invasion of reconstituted basement membrane, thus exhibiting characteristics of well-differentiated thyroid carcinoma. In vivo, xenografted XTC cells grow with a doubling time of 9.8 +/- 0.8 days. Tumors spontaneously metastasize to the lymph nodes and less frequently to the lungs and the liver. The cells retained their differentiated function in vivo as assessed by human thyroglobulin (hTG) secretion and immunohistochemistry. This is a first report of the establishment of a unique, highly differentiated thyroid carcinoma cell line derived from an HCC. Based on the ability to invade through reconstituted basement membrane in vitro and the potential to metastasize in vivo, this cell line may provide a unique model to study invasion and metastazation of well-differentiated thyroid cancer.  相似文献   

19.
Drug accumulation studies with the anticancer agents adriamycin and vincristine were carried out on the MDR variant of the human lung cell lines DLKP, DLKP-A10 which overexpresses the MDR associated P-glycoprotein efflux pump. Reduced cellular accumulation of both agents was observed in the resistant variant. The subsequent addition of verapamil and cyclosporin A resulted in partial restoration of cellular accumulation of both drugs in the DLKP-A10 resistant variant while complete restoration of cellular drug levels was observed in the SKMES-1/ADR cell line. These results suggested that the accumulation defect observed in the SKMES-1/ADR cell line was P-glycoprotein mediated and that accordingly, the cells exhibited characteristics consistent with the classical MDR phenotype. In contrast, while P-glycoprotein also appears to mediate a reduction in cellular drug accumulation in the DLKP-A10 cells, an alternative transport mechanism may also be present. No significant increase in the expression of either the MRP or LRP transport proteins was observed in the resistant cells. Metabolic inhibition by antimycin A (but not sodium azide or 2-deoxy-D-glucose) resulted in complete restoration of drug accumulation suggesting the presence of an alternative energy dependent transport mechanism. Fluorescent microscopy studies indicated different cellular localisation of the drug within the parental and resistant cells despite equivalent intracellular concentrations. These studies also revealed the presence of an ATP-dependent, vesicular sequestration mechanism which may be involved in the reduction of nuclear adriamycin accumulation in the DLKP-A10 cell line. This was indicated by observation of the disruption of cytoplasmic vesicles by antimycin A and also inhibition of cytoplasmic drug sequestration by the carboxylic ionophores, monensin and nigericin, accompanied by increased adriamycin accumulation and redistribution of the drug from the cytoplasm to the nucleus.  相似文献   

20.
Cotransfer of a therapeutic gene together with the human MDR1 gene provides an opportunity to increase the number of transduced marrow cells, expressing the therapeutic gene, by in vivo selection for MDR1. We have used an Lg-MDR1-IRES-neo (LgMIN) retroviral vector, containing MDR1 and neo genes, separated by the EMCV IRES. Human HeLa or canine CTAC cells, transduced with GALV env pseudotyped LgMIN at an MOI of less than 0.01 to ensure 1 proviral copy/genome, were selected with either G418 for neo expression or colchicine for MDR1 expression. The titer determined on HeLa cells with G418 selection was eight-fold higher than that with colchicine selection. In contrast, the same viral supernatant exhibited only a 1.4-fold difference between neo- and MDR1-based viral titer values for CTAC cells. The transduced HeLa cells, with one intact proviral copy per genome, exhibited a 55-fold higher resistance to G418 but only a 4-fold higher resistance to colchicine and a 2-fold higher resistance to Taxol compared with nontransduced cells. About 23% of the transduced cell population did not express vector-derived P-glycoprotein (P-gp) as detected by anti-human P-gp MAb MRK-16. This could explain the difference in viral titers obtained on CTAC cells but not that obtained on HeLa cells. The vector-mediated increase in expression of P-gp was about 20-fold higher in CTAC cells as compared with HeLa cells. These results indicated suppression of expression of vector-derived MDR1 in HeLa cells, in contrast with CTAC cells. To investigate further the possible reasons for this difference, genomic DNA was isolated from the G418-resistant individual colonies of infected cells and analyzed by PCR for full-length proviral MDR1. For transduced CTAC and HeLa cells, selected at a G418 concentration of 1 mg/ml, PCR detected aberrant forms of MDR1 in 17 to 25% of colonies tested. The aberrant forms consisted of MDR1 genes with 2- and 0.7-kb deletions. DNA sequencing across the 2-kb and the 0.7-kb deletion junction suggests cryptic splicing in the producer cell line as the origin of these deletions. The 2-kb deletion corresponds to MDR1 mRNA cryptic splicing via donor (codon 113) and acceptor (codon 773). The 0.7-kb deletion corresponds to splicing via the same donor and a different acceptor (codon 344). When transduced HeLa cells were selected at a higher concentration of G418 (3 mg/ml), the aberrant forms were detected at an increased frequency of about 50% of colonies tested. These results indicate that vector-derived MDR1 is a poor selective marker in HeLa cells but not in CTAC cells and that deletions, which inactivated the MDR1 gene in a bicistronic Mo-MuLV vector, may provide an advantage for expression of the second transgene in HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号