首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nanohole arrays in an Ag film were used as a substrate for surface-enhanced Raman scattering in the optical range. Extraordinary optical transmission and local field enhancement in Ag nanohole arrays were theoretically simulated using three-dimensional finite difference time domain method. The periodicity of the holes was adjusted to control the transmission intensity and electric field intensity. The calculation results show that the peak position of transmission red-shifts as the periodicity increases, while the peak intensity decreases linearly. The electric field is localized in a very small region at the edges of the holes, which means the surface-enhanced Raman scattering originates only from a small number of molecules located in the edge regions. The electric field intensity changes with the excitation wavelength in a similar trend to the transmission intensity. Both the electric field intensity and transmission intensity reach their maximum value at the frequency of surface plasmon resonance. The structure that gives resonant transmission provides the maximum surface-enhanced Raman scattering signal. Controllable and predictable surface-enhanced Raman scattering can be produced by using this novel nanostructure. The structure can be optimized to get the maximum surface-enhanced Raman scattering signal at a certain excitation wavelength through numerical simulations.  相似文献   

2.
Daria VR  Saloma C  Kawata S 《Applied optics》2000,39(28):5244-5255
To gain a better understanding of the spatiotemporal problems that are encountered in two-photon excitation fluorescence imaging through highly scattering media, we investigate how diffraction affects the three-dimensional intensity distribution of a focused, pulsed optical beam propagating inside a scattering medium. In practice, the full potential of the two-photon excitation fluorescence imaging is unrealized at long scattering depths, owing to the unwanted temporal and spatial broadening of the femtosecond excitation light pulse that reduces the energy density at the geometric focus while it increases the excitation energy density in the out-of-focus regions. To analyze the excitation intensity distribution, we modify the Monte Carlo-based photon-transport model to a semi-quantum-mechanical representation that combines the wave properties of light with the particle behavior of the propagating photons. In our model the propagating photon is represented by a plane wave with its propagation direction in the scattering medium determined by the Monte Carlo technique. The intensity distribution in the focal region is given by the square of the linear superposition of the various plane waves that arrive at different incident angles and optical path lengths. In the absence of scattering, the propagation model yields the intensity distribution that is predicted by the Huygens-Fresnel principle. We quantify the decrease of the energy density delivered at the geometric focus as a function of the optical depth to the mean-free-path ratio that yields the average number of scattering events that a photon encounters as it propagates toward the focus. Both isotropic and anisotropic scattering media are considered. Three values for the numerical aperture (NA) of the focusing lens are considered: NA = 0.25, 0.5, 0.75.  相似文献   

3.
We have studied the optical properties of copper-doped lithium niobate crystals using semiconductor light-emitting diodes and lasers emitting in the visible and ultraviolet spectral regions as excitation sources. The results demonstrate that, at an excitation frequency approaching the frequency of electronic absorption in copper ions, there is discrete resonance Raman scattering in the form of a frequency comb. The observed Raman satellites of discrete light scattering are due to polar longitudinal A1 optical modes of the lithium niobate single crystal. Under excitation by a light-emitting diode with a wavelength of 520 nm, we observe a sharp increase in discrete light scattering intensity in comparison with the photoluminescence excited by shorter wavelength excitation sources.  相似文献   

4.
Ahmed A  Gordon R 《Nano letters》2011,11(4):1800-1803
Directing the emission from optical emitters is highly desired for efficient detection and, by reciprocity, efficient excitation as well. As a scattering process, Raman benefits from directivity enhancements in both excitation and emission. Here we demonstrate directivity enhanced Raman scattering (DERS) using a nanoantenna fabricated by focused ion beam milling. The nanoantenna uses a resonant ring-reflector to shape the emitted beam and achieve DERS-this configuration is most similar to a waveguide antenna. The ring reflector boosts the measured Raman signal by a factor of 5.5 (as compared to the ground plane alone), and these findings are in quantitative agreement with comprehensive numerical simulations. The present design is nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. Furthermore, the emission is directed out of the plane, so that this design can be used to achieve DERS using conventional Raman microscopes, which has yet to be achieved with Yagi-Uda and traveling wave antenna designs.  相似文献   

5.
6.
The depth of penetration of periodic-field magnetoquasistatic sensors depends on two factors: the skin depth into the material under test and the spatial wavelength of the imposed periodic magnetic field. In applications where high depth of penetration is desirable, the second factor may result in the need for sensors with impractically large dimensions. We describe a way to overcome this problem by generating a field whose effective spatial wavelength is on the order of the sensor length. The magnetic field is shaped by a distributed primary winding that consists of multiple winding segments, with the total current amplitude in each segment following a sinusoidal envelope function. The effective spatial wavelength of the imposed magnetic field may be changed dynamically by changing the excitation current pattern in the primary windings. From a modeling perspective, an advantage of this kind of magnetic field excitation is that the drive current distribution is known from the beginning, since the width of the individual windings is small compared to the wavelength and may be approximated as being infinitely narrow. This greatly simplifies numerical computation, since it makes it possible to apply fast discrete Fourier transform methods directly. We discuss first sensors with Cartesian geometry. We then discuss cylindrical geometry sensors whose models use fast Hankel transforms.  相似文献   

7.
Two efficient Monte Carlo models are described, facilitating predictions of complete time-resolved fluorescence spectra from a light-scattering and light-absorbing medium. These are compared with a third, conventional fluorescence Monte Carlo model in terms of accuracy, signal-to-noise statistics, and simulation time. The improved computation efficiency is achieved by means of a convolution technique, justified by the symmetry of the problem. Furthermore, the reciprocity principle for photon paths, employed in one of the accelerated models, is shown to simplify the computations of the distribution of the emitted fluorescence drastically. A so-called white Monte Carlo approach is finally suggested for efficient simulations of one excitation wavelength combined with a wide range of emission wavelengths. The fluorescence is simulated in a purely scattering medium, and the absorption properties are instead taken into account analytically afterward. This approach is applicable to the conventional model as well as to the two accelerated models. Essentially the same absolute values for the fluorescence integrated over the emitting surface and time are obtained for the three models within the accuracy of the simulations. The time-resolved and spatially resolved fluorescence exhibits a slight overestimation at short delay times close to the source corresponding to approximately two grid elements for the accelerated models, as a result of the discretization and the convolution. The improved efficiency is most prominent for the reverse-emission accelerated model, for which the simulation time can be reduced by up to two orders of magnitude.  相似文献   

8.
We show that by using Monte Carlo simulations, one can study the characteristics of beams with adjustable spatial coherence properties that propagate through highly scattering media. Moreover, we show that a single simulation is sufficient to obtain the intensity distribution at the exit surface of the scattering medium for any degree of global coherence of the input beam. The efficient numerical procedure correctly reproduces the first- and second-order statistics of the intensity distribution obtained after propagation through diffusive media.  相似文献   

9.
Patterson MS  Pogue BW 《Applied optics》1994,33(10):1963-1974
In general it is not possible to write an analytic expression for the fluorescence signal generated by a fluorophore distributed in a scattering medium such as tissue. However, by assuming that the scattering properties of the tissue are the same at the excitation and emission wavelengths, we have derived a simple relation between the fluorescence and the scatter signals. Along with diffusion theory, this was used to write expressions for the fluorescence signal detected at the tissue surface in both the time and the frequency domains. Experiments using the fluorophore aluminum chlorosulfonated phthalocyanine in tissue-simulating materials confirmed the accuracy of the model. Applications to in vivo spectroscopy are discussed.  相似文献   

10.
The neutron energy distribution of the IRSN standard (241)Am-Be(alpha,n) source was measured using a proton recoil liquid scintillator, BC501A, >1.65 MeV. The experimental data were compared with the ISO recommended neutron energy distribution for an Am-Be source and some significant discrepancies were observed. Monte Carlo simulations were then performed to investigate on the neutron source term in order to consider the different parameters between the IRSN Am-Be source and the one used to establish the neutron emission spectrum recommended by the ISO standard. The variation of the parameters of the source did not explain the remaining discrepancies. A good agreement with the experimental results was observed when the theoretical neutron energy distribution from Geiger and Van der Zwan was introduced in the study as new source term. These investigations showed that the ISO recommended Am-Be distribution might not be well suited to represent the neutron energy distribution of all Am-Be sources, and that the manufacturing of the sources might play a major role in the neutron fluence energy distribution.  相似文献   

11.
We consider a concise method based on recurrent relations that permit rigorous computing of the first and the second moments of the components of the vector locating a randomly walking photon in an infinite homogeneous light-scattering medium. On assumption that the components obey a three-dimensional Gaussian distribution a probability density for the photon locations at the Nth scattering event can readily be written down and the light-intensity distribution in the medium may be calculated. The results from theoretical analyses are compared with the solution of a light-diffusion equation and with results of Monte Carlo simulations and show a better fit with simulated data than the diffusion approximation.  相似文献   

12.
We describe here the realization of a single electron source similar to single photon sources in optics. On-demand single electron injection is obtained using a quantum dot connected to the conductor via a tunnel barrier of variable transmission (quantum point contact). Electron emission is triggered by a sudden change of the dot potential which brings a single energy level above the Fermi energy in the conductor. A single charge is emitted on an average time ranging from 100 ps to 10 ns ultimately determined by the barrier transparency and the dot charging energy. The average single electron emission process is recorded with a 0.5 ns time resolution using a real-time fast acquisition card. Single electron signals are compared to simulation based on scattering theory approach adapted for finite excitation energies.  相似文献   

13.
Stramski D  Piskozub J 《Applied optics》2003,42(18):3634-3646
We present an approach based on three-dimensional Monte Carlo radiative transfer simulations for estimating scattering error in measurements of light absorption by aquatic particles with a typical laboratory double-beam spectrophotometer. The scattering error is calculated by combining the weighting function describing the angular distribution of photon losses that are due to scattering on suspended particles with the volume scattering function of particles. We applied this method to absorption measurements made on marine phytoplankton, a diatom Thalassiosira pseudonana and a cyanobacterium Synechococcus. Assuming that the scattering phase function is described by the Henyey-Greenstein formula, we determined the backscatter probability of phytoplankton, which yields the best correction for scattering error at a light wavelength of 750 nm, where true absorption is null. The backscattering ratio estimated for both phytoplankton species is significantly higher than previously reported data based on Mie-scattering calculations for homogeneous spheres. Depending on the type of particles, the corrected absorption spectra obtained with our method may be similar or significantly different from spectra obtained with the null-point correction based on wavelength-independent scattering error.  相似文献   

14.
Ruiz PD  Huntley JM  Wildman RD 《Applied optics》2005,44(19):3945-3953
We show, for the first time to our knowledge, how wavelength-scanning interferometry can be used to measure depth-resolved displacement fields through semitransparent scattering surfaces. Temporal sequences of speckle interferograms are recorded while the wavelength of the laser is tuned at a constant rate. Fourier transformation of the resultant three-dimensional (3-D) intensity distribution along the time axis reconstructs the scattering potential within the medium, and changes in the 3-D phase distribution measured between two separate scans provide the out-of-plane component of the 3-D displacement field. The principle of the technique is explained in detail and illustrated with a proof-of-principle experiment involving two independently tilted semitransparent scattering surfaces. Results are validated by standard two-beam electronic speckle pattern interferometry.  相似文献   

15.
Blanca CM  Saloma C 《Applied optics》2001,40(16):2722-2729
We study the performance of two-color excitation (2CE) fluorescence microscopy [Opt. Lett. 24, 1505 (1999)] in turbid media of different densities and anisotropy. Excitation is achieved with two confocal excitation beams of wavelengths lambda(1) and lambda(2), which are separated by an angular displacement theta, where lambda(1) not equal lambda(2), 1/lambda(e) = 1/lambda(1) + 1/lambda(2), and lambda(e) is the single-photon excitation wavelength of the sample. 2CE fluorescence is generated only in regions of the sample where the two excitation beams overlap. The 2CE fluorescence intensity is proportional to the product of the two excitation intensities and could be detected with a large-area photodetector. The requirement of spatiotemporal simultaneity for the two excitation beams makes 2CE fluorescence imaging a promising tool for observing microscopic objects in a highly scattering medium. Optical scattering asymmetrically broadens the excitation point-spread function and toward the side of the focusing lens that leads to the contrast deterioration of the fluorescence image in single- or two-photon (lambda(1) = lambda(2)) excitation. Image degradation is caused by the decrease in the excitation energy density at the geometrical focus and by the increase in background fluorescence from the out-of-focus planes. In a beam configuration with theta not equal 0, 2CE fluorescence imaging is robust against the deleterious effects of scattering on the excitation-beam distribution. Scattering only decreases the available energy density at the geometrical focus and does not increase the background noise. For both isotropic and anisotropic scattering media the performance of 2CE imaging is studied with a Monte Carlo simulation for theta = 0, pi/2, and pi, and at different h/d(s) values where h is the scattering depth and d(s) is the mean-free path of the scattering medium.  相似文献   

16.
The investigation of polarization orientation on damage performance of type I doubler KDP crystals under different wavelengths pulses irradiation is presented in this work. Pinpoints densities (PPD) and the size distribution of pinpoints are extracted through light scattering pictures captured by microscope. The obtained results indicate that the measured PPD as a function of the fluence is both wavelength and polarization dependent, although neither fluence nor polarization have impact on the size distribution of pinpoints. We also find that the damage performances can separate into three groups depending on the wavelength, which suggests the existence of different categories of precursors and different mechanisms responsible for bulk damage initiation in SHG KDP crystals.  相似文献   

17.
Blanca CM  Saloma C 《Applied optics》2000,39(28):5187-5193
The performance of third-harmonic generation (THG) microscopy in highly scattering media is analyzed with the Monte Carlo technique. The three-dimensional point-spread function (PSF) of the laser-scanning THG microscope with a pulsed excitation light source is derived for both isotropic and anisotropic scattering media and at different h/d(s) values, where h is the scattering depth as measured from the geometric focus of the objective lens and d(s) is the mean free path of the scattering medium. The generated THG signal is detected by a large-area photodetector. The PSF of the THG microscope is given by the third power of the normalized distribution of the excitation beam near the beam focus. The behavior of the temporal broadening of the excitation pulse on the generated THG signal is also analyzed as a function of h/d(s). The relative advantages and disadvantages of the THG microscope relative to the two-photon fluorescence microscope are discussed thoroughly.  相似文献   

18.
Wave scattering by a chiral grating is studied in this paper. Numerical results are given, and physical properties are discussed, including the influence of frequency, angle of incidence, and aspect ratio. At high frequencies we find anomalous coupling regions known as Wood's anomalies, which are explained by the excitation and reradiation of leaky waveguide modes in the periodic layer. The chiral grating can possess both frequency-selection and mode-conversion properties.  相似文献   

19.
应用Mie散射理论,在散射角0~π范围内,模拟微球体颗粒的散射光强度与粒径大小的变化关系,分析了相对折射率的大小对散射光强度的影响;在实验装置条件下,分别模拟了散射光强度与粒径大小的变化关系及2um、5um、10um三种粒子的散射光强度与波长的变化关系。实验验证了数值模拟与实验结果基本一致,也证明实验中粒子散射遵从Mie散射理论模型。  相似文献   

20.
Imaging of oxygen in tissue in three dimensions can be accomplished by using the phosphorescence quenching method in combination with diffuse optical tomography. We experimentally demonstrate the feasibility of tomographic imaging of oxygen by phosphorescence lifetime. Hypoxic phantoms were immersed in a cylinder with scattering solution equilibrated with air. The phantoms and the medium inside the cylinder contained near-infrared phosphorescent probe(s). Phosphorescence at multiple boundary sites was registered in the time domain at different delays (t(d)) following the excitation pulse. The duration of the excitation pulse (t(p)) was regulated to optimize the contrast in the images. The reconstructed integral intensity images, corresponding to delays t(d), were fitted exponentially to give the phosphorescence lifetime image, which was converted into the three-dimensional image of oxygen concentrations in the volume. The time-independent diffusion equation and the finite element method were used to model the light transport in the medium. The inverse problem was solved by the recursive maximum entropy method. We provide what we believe to be the first example of oxygen imaging in three dimensions using long-lived phosphorescent probes and establish the potential of these probes for diffuse optical tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号