首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations of gamete fusion, sperm entry and the fate of the sperm nucleus, plasma membrane, mitochondrion, and axonemal complex in fertilized echinoderm eggs are reviewed. The timing of gamete fusion with respect to the onset of electrical activity characteristic of the activated egg and the affects of fixation conditions on the stability of fusing membranes are discussed. Observations from investigations using cationized ferritin labeled gametes and immunogold cytochemistry to demonstrate the mixing of sperm plasma membrane components within the egg plasma membrane, in particular along the surface of the fertilization cone, are compared with results from studies in somatic cells. Transformations of the sperm nucleus into a male pronucleus, consisting of sperm nuclear envelope breakdown, chromatin dispersion, and formation of a pronuclear envelope, are correlated with recent biochemical observation of similar processes in other cellular systems. Fates of the sperm mitochondrion and axonemal complex are examined.  相似文献   

2.
Perinuclear theca (PT) is the cytoskeletal coat of mammalian sperm nucleus that is removed from the sperm head at fertilization. PT harbors the sperm borne, oocyte-activating factor (SOAF), a yet-to-be-characterized substance responsible for triggering the signaling cascade of oocyte activation, thought to be dependent on intra-oocyte calcium release. The present article reviews the current knowledge on the biogenesis and molecular composition of sperm PT. Possible functions of sperm PT during natural and assisted fertilization, and in the initiation of embryonic development are discussed. Furthermore, evidence is provided that SOAF is transferred from the sperm PT to oocyte cytoplasm through the internalization and rapid solubilization of the post-acrosomal PT. It is shown that during natural fertilization the sperm PT dissolves in the oocyte cytoplasm concomitantly with sperm nuclear decondensation and the initiation of pronuclear development. SOAF activity is preserved in the differentially extracted sperm heads only if the integrity of PT is maintained. After intracytoplasmic sperm injection (ICSI), activation occurs only in those oocytes in which the injected spermatozoon displays complete or partial dissolution of PT. In the latter case, the residual PT of the sub-acrosomal and/or post-acrosomal sperm region may persist on the apical surface of the sperm nucleus/male pronucleus and may cause a delay or arrest of zygotic development. We propose that the sperm PT harbors SOAF in the post-acrosomal sheath, as this is the first part of the sperm cytosol to enter the oocyte cytoplasm and its disassembly appears sufficient to initiate the early events of oocyte activation. Dissolution of the sub-acrosomal part of the PT, on the other hand, appears necessary to insure complete DNA decondensation in the internalized sperm nucleus and initiate DNA synthesis of both pronuclei. The release of the SOAF from the sperm head into oocyte cytoplasm at fertilization ultimately leads to the activation of oocyte mechanism including the completion of the meiotic cell cycle, pronuclear development and anti-polyspermy defense.  相似文献   

3.
The surface of the unfertilized sea urchin egg is covered by the vitelline layer (VL), a fibrous extracellular matrix that contains receptors for sperm. At fertilization, cortical granule exocytosis releases enzymes and structural proteins that cause the VL to elevate and become remodelled into the mechanically and chemically tough fertilization envelope. This envelope prevents further penetration of sperm and protects the embryo during early development. A thicker, more complex vitelline envelope surrounds the Xenopus laevis egg. This fibrous coat is also restructured at fertilization to produce an impenetrable barrier to sperm. The biochemical steps that occur during self-assembly of these fertilization envelopes are reviewed, and the ultrastructural changes that occur, as seen in platinum replicas of quick-frozen, deep-etched, and rotaryshadowed eggs, are illustrated.  相似文献   

4.
The ultrastructural study carried out on (a) oocytes of Armadillidium vulgare during vitellogenesis, (b) mature eggs taken from the ovaries during the parturial moult of the posterior half of the body, and (c) fertilized eggs collected within a few hours of their release into the brood pouch, has clearly demonstrated that before the fertilization the chorion is the only envelope present in the egg of oniscidean isopods. In the mature eggs, the chorion appears as a uniformly electron‐dense lamina, about 0.4–0.5 µm thick, which does not show any specialized area. A second envelope, described by other authors as vitelline envelope, is formed above the oolemma only right after fertilization and appears separated from the chorion by a space full of liquid. The ways in which the genesis of this envelope is realized are not yet clear; it could be interpreted rather as a fertilization membrane. The investigations carried out with the aid of a battery of FITC‐lectins have highlighted the presence at the chorion surface of unfertilized eggs of various saccharide residues distributed in uniform way. No significant change was observed in the pattern of lectins binding to the chorion of eggs taken from the brood pouch, thus demonstrating how, after the fertilization, no significant rearrangement in the distribution of saccharide residues present on the egg surface occurs in A. vulgare. The ways in which, therefore, the recognition, the binding and the entry of the peculiar sperm of oniscidean isopods into the egg occur, still remain all to be deciphered. Microsc. Res. Tech. 79:792–798, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The mammalian acrosome is a highly specialized organelle overlying the anterior part of the sperm nucleus and contains a variety of proteins, including hydrolytic enzymes and matrix molecules. Functionally, the anterior acrosome is involved in the acrosome reaction or sperm-zona pellucida interaction, while the equatorial segment (posterior acrosome) is involved in sperm-egg fusion. The acrosome is formed during spermiogenesis, during which associated molecules are transported from the Golgi apparatus and organized. Many of the molecules thus arranged gradually become compartmentalized during sperm passage through the epididymis. Some of them are further modified during the fertilization process. The findings indicate that acrosomal molecules are not only restricted to a specific region (domain) of the acrosome but also undergo ongoing relocation in a stage-specific manner during sperm maturation in the testis and epididymis. Such maturation-associated modifications are considered essential for sperm molecules to reach the correct or final site before fertilization. This review focuses on the organization and modifications of the acrosomal molecules as well as their compartmentalization within the acrosome.  相似文献   

6.
Polyspermy is one of the most commonly observed abnormal types of fertilization in mammalian oocytes. In vitro fertilization (IVF) provides approaches to study the mechanisms by which oocytes block polyspermic fertilization. Accumulated data indicate that oocyte, sperm and insemination conditions are all related to the occurrence of polyspermic fertilization. A high proportion of immature and aged oocytes showed polyspermy as compared with mature oocytes. Preincubation of oocytes and/or sperm with oviductal epithelial cells or collected oviductal fluid before IVF reduces polyspermic penetration. Recently, it was found that an abnormal zona pellucida is one of main causes of polyspermy in human eggs. A high proportion of polyspermy has resulted from the use of a high concentration of capacitated spermatozoa at the site of fertilization, irrespective of in the in vivo or in vitro environment. Oviductal secretions or oviductal epithelial cells themselves can regulate the number of spermatozoa reaching or binding to the zona pellucida thus reducing multiple sperm penetration. Suboptimal in vitro conditions, such as supplementations in IVF media, pH, and temperature during IVF, also induce polyspermic fertilization in some mammals. Species-specific differences are present regarding the relationship between insemination conditions and polyspermy.  相似文献   

7.
Centrosomes play crucial roles in the union of sperm and egg nuclei during fertilization and in the equal separation of genomic material during cell division. While many studies in recent years have focused on the molecular composition of centrosomes, this article focuses on the structural behavior of centrosomes and on factors that play a role in centrosome functions under normal, artificially altered, and abnormal conditions. We review here how studies in the classic sea urchin egg model have contributed to our knowledge on the centrosome cycle within the cell cycle, on compaction and decompaction of centrosomal material, and on the contributions of maternal and paternal centrosomes during fertilization. Centrosome material is activated in unfertilized eggs by increasing pH with ammonium and by increasing calcium with the ionophore A23187, which are conditions that are normally induced by sperm. D(2)O and taxol also induce centrosome aggregation in the unfertilized egg. Maternal and paternal centrosome material both contribute to the formation of a functional centrosome but the formation of a bipolar centrosome requires material from the paternal centrosome. Fertilization of taxol-treated eggs reveals that the male centrosome possesses the capability to attract maternal centrosome material. When pronuclear fusion of the male and female pronuclei is inhibited with agents such as the disulfide reducing agent dithiothreitol (DTT) a bipolar mitotic apparatus is formed from the paternal centrosome. Furthermore, one centrosome of the bipolar mitotic apparatus is capable of organizing an additional half spindle that attaches to the female pronucleus indicating a functional and perhaps structural connection between centrosomes and chromatin. Sea urchin eggs are also useful to study centrosome abnormalities and consequences for the cell cycle. While classic studies by Theodor Boveri have shown that dispermic fertilization will result in abnormal cell division because of multiple centrosomes contributed by sperm, abnormal cell division can also be induced by chemical alterations of centrosomes. Compaction and decompaction of centrosome structure is studied using chloral hydrate or the chaotropic agent formamide, which reveals that centrosomes can be chemically altered to produce mono- or multipolar abnormal mitosis and unequal distribution of genomic material upon release from formamide. The patterns of abnormal centrosome reformations after recovery from formamide treatment resemble those seen in cancer cells which argues that structural defects of centrosomes can account for the formation of abnormal mitosis and multipolar cells frequently observed in cancer. In summary, the sea urchin model has been most useful to gain information on the role of centrosomes during fertilization and cell division as well as on adverse conditions that play a role in centrosome dysfunctions and in disease.  相似文献   

8.
The extracellular matrix (ECM) surrounding the anuran egg is composed of jelly coat layers, an envelope, and the perivitelline space, which separates the envelope from the egg plasma membrane. Both the jelly coat layers and egg envelopes are required for fertilization in anurans. This paper reviews the current understanding of the structure-function relations of the ECM, with emphasis on the egg envelope. The fibrous egg envelope exists in four related forms. The envelope forms differ in their ultrastructures, macromolecular compositions, and cellular functions. After the oocyte is released from the ovary, conversion of one envelope form to another is brought about by factors secreted by the oviduct prior to fertilization and by factors released from the egg in the sperm-triggered cortical reaction. An additional extracellular matrix structure, located in the perivitelline space, has recently been identified in Xenopus laevis, as well as a previously undescribed reorganization of envelope fibers occurring at fertilization. The molecular changes in the ECM glycoproteins (limited proteolysis, lectin-ligand binding, and conformational changes) and the oviductal and egg macromolecules responsible for the conversion of envelope forms are discussed. New experimental evidence that supports the lectin-ligand hypothesis for the formation of the fertilization layer is presented. It is proposed that the molecular changes in the ECM are responsible for the ultrastructural alterations of the ECM and for modifications of the fertilization and developmental functions of the anuran egg ECM.  相似文献   

9.
10.
The inheritance and duplication of the sperm centriole in the sheep zygote was studied by transmission electron microscopy. We found two centrioles at one pole and a single centriole at the opposite pole of the first mitotic spindle, in monospermic eggs, 20-21 hours postinsemination. This indicated both duplication and relocation of centrioles to opposite spindle poles during fertilization. The absence of centrioles in mature sheep oocytes was confirmed. Following activation by the calcium ionophore A 23187, mature oocytes entered mitosis and formed a bipolar spindle 18 hours later. Centrioles were not detected in the mitotic spindle of parthenogenotes. Androgenetic eggs were obtained by excision of the anaphase II/telophase II meiotic spindle of fertilized eggs. They were capable of undergoing mitosis and formed one or two bipolar spindle(s) in monospermic and dispermic eggs, respectively, 20-24 hours postinsemination. In two monospermic androgenetic eggs, two centrioles were found at one pole and a single centriole at the opposite pole of the first mitotic spindle. Three centrioles were also observed in another androgenetic egg in prometaphase of the first mitotic division, in close vicinity to the sperm neck-piece. These data provide evidence that the sperm centriole do reproduce and occupy a pivotal position on opposite spindle poles at syngamy. Altogether, the present findings suggest that centrioles of sheep zygotes are paternally derived.  相似文献   

11.
A method for correlative studies of early fertilization events that integrates techniques of intracellular electrophysiological recording, video-imaging, and electron microscopy is described. A key feature of the method is its ability to identify the fertilizing sperm and to record the moment of egg excitation. Since the site of gamete interaction is recognizable throughout all stages of preparation, difficulties associated with locating the site of fertilization and determining specimen orientation for microtomy and electron microscopic examination are eliminated. Virtually all samples yield useful information. An example of interacting gametes fixed 4 sec after initiation of the fertilization potential and serial sectioned is described. The method is applicable to systems other than fertilizing eggs when functional, temporal, and spatial relationships of individual cells need to be correlated with changes in ultrastructure.  相似文献   

12.
In this study, the sperm ultrastructure of three species of Idarnes genus was investigated using light and transmission electron microscopy. Spermatozoon morphology of the three species was similar to that of most Chalcidoidea, with helicoidally twisted nucleus and flagellum. The head region consists of an acrosome and a nucleus; the nucleus-flagellum transition region characterized by the presence of mitochondrial derivatives and the centriolar adjunct; a flagellum region, which includes the axoneme with microtubular arrangement 9 + 9 + 2 and two mitochondrial derivatives. However, the sperm of these three species exhibit features that discriminate one species from each other: (1) only one species, Idarnes sp. 2 (carme group) exhibited an extracellular sheath surrounding the anterior portion of the nucleus, which extends to the anterior region of the flagellum, but it did not present filaments; (2) the acrosome in the three species was quite different, Idarnes sp. 1 and Idarnes sp. 2 (carme group) has two compartments (acrosomal and subacrosomal vesicles) while Idarnes sp. 3 (flavicollis group) has a third compartment (perforatorium); (3) the centriolar adjunct elongated and its location among the mitochondrial derivatives is similar for the three species analyzed; (4) mitochondrial derivatives differ between the species, with triangular (Idarnes sp. 1 and sp. 3) and elongated or flat shaped (Idarnes sp. 2) appearance. These data shows that sperm structure may differ within the same genus and confirms the potential of these cells in phylogenetic and taxonomic analyses in the Chalcidoidea superfamily, as well as in Hymenoptera in general.  相似文献   

13.
Observation of sperm development and determination of their morphological characteristics are very important to the understanding of phylogenetic relationships and the study of sperm function during fertilization. Although ultrastructural studies of sperm development in the testes of the fruit fly Drosophila have been performed, there are few reports describing electron microscopic morphology of mature sperm, that is, those released from the testes to the seminal vesicles. Here, we present the first report of the sagittal organization of Drosophila sperm head and neck regions by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The head and tail structures of a mature sperm, for example, the acrosome, nucleus, and flagellum, were easy to distinguish by the morphological characteristics of the sperm surface by SEM. The morphological relationships between the surface and internal structures of mature sperm were confirmed by observing longitudinal sections with TEM. Our approach overcame the technical difficulties involved in sample preparation for electron microscopic observation of the Drosophila mature sperm head, and therefore, this study serves as an important foundation for future genetic dissection of sperm ultrastructure and function in male sterile mutants. Microsc. Res. Tech. 77:661–666, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Ubiquitin and ubiquitin-like proteins control the degradation of substrates as diverse as cyclins, viral envelope proteins, plasma membrane receptors, and mRNAs. The ubiquitinated substrates are targeted towards the lysosomal or proteasomal degradation sites. The number and position of ubiquitin molecules bound to substrates' lysine residues and the number and position of ubiquitin molecules in polyubiquitin chains determine the astonishing substrate specificity of ubiquitin-mediated proteolysis. Ubiquitin is likely to be expressed in mammalian gametes and embryos at any given developmental step, but the information on ubiquitin dependence of gametogenesis and fertilization is sketchy. Ubiquitin ligases E1, E2, E3, and UBC4 are active in the testis. Ubiquitin and proteasomal subunits can be detected in the human sperm centrosome that undergoes dramatic reduction during spermatid elongation. Spermatid histones are ubiquitinated as they are being transiently replaced by transitional proteins and permanently by protamines. Ubiquitin tagging of the sperm mitochondrial membranes may serve as a death sentence for paternal mitochondria at fertilization, thus promoting the maternal inheritance of mitochondrial DNA (mtDNA) in mammals. The defective spermatozoa become surface-ubiquitinated during sperm descent down the epididymis. Finally, new evidence suggests the involvement of ubiquitin-proteasome pathway in the zona penetration by the acrosome-reacted spermatozoon. Such differential patterns of ubiquitination in the testis and epididymis, and inside the egg, may be necessary for reproductive success in humans and animals. Deciphering and eventually manipulating the ubiquitin-dependent proteolysis in the reproductive system could allow us to redirect the mode of mtDNA inheritance after cloning and ooplasmic transplantation, provide germ line therapy in some cases of male infertility, develop new contraceptives, manage polyspermia during in vitro fertilization, and establish objective markers for infertility diagnostics, semen evaluation, and prediction of future fertility.  相似文献   

15.
The mammalian spermatozoon is a highly polarized cell whose surface membrane can be divided into five functionally, structurally, and biochemically distinct domains. These domains are formed during spermatogenesis, continue to be modified during passage through the epididymis, and are further refined in the female reproductive tract. The integrity of these domains appears to be necessary for the sperm to perform its function—fusion with the egg and subsequent fertilization. The domains can be identified morphologically by their surface contours and texture, the content, distribution, and organization of intramembranous particles after freeze-fracture, and by the density of surface and cytoplasmic electron-dense coatings in thin sections. By using a variety of labels that stain carbohydrates (lectins), lipids (filipin and polymyxin B), and monoclonal antibodies to specific membrane constituents, the biochemical composition of these contiguous membrane regions has also been partly elucidated. We review here what is known about the structure, composition, and behavior of each membrane domain in the mature sperm and include some information regarding domain formation during spermatogenesis. The sperm is an excellent model system to study the creation and maintenance of cell polarity, granule exocytosis, and fertilization. Hopefully this review will provide impetus for future studies aimed more directly at addressing the relationship of its morphology to its functions.  相似文献   

16.
The anuran egg is polarized along its animal–vegetal axis and becomes bilaterally symmetrical before first cleavage. Functional sperm entry is regionally restricted to the animal hemisphere of the egg, and functional sperm entry does not occur after egg activation. This regional and functional restriction in sperm entry correlates with the presence of long, slender microvilli and with the presence of the filamentous component of the glycocalyx. After sperm fusion, the egg undergoes activation, including a depolarization of the membrane potential and exocytosis of granules in the cortex. Both of these activation responses are the result of a propagated increase in intracellular calcium. The egg's ability to undergo a propagated activation response develops after germinal vesicle breakdown and depends on the development of the cortical endoplasmic reticulum. Once activated, the radial symmetric egg acquires bilateral symmetry due to a rotation of the egg cortex relative to the inner cytoplasm. A transient array of parallel microtubules forms near the vegetal cortex and may be part of the motor driving the cortical rotation.  相似文献   

17.
Actin has been characterized and localized in sperm cells of many mammals. Nevertheless, the reported localizations obtained by different methods and/or antibodies varied from species to species and even for the same species. To clarify the question, sperm actin distribution was reinvestigated under uniform technical conditions. Immunogold post-embedding procedures were performed using a polyclonal and two monoclonal antibodies of known specificity to localize actin in spermatids and spermatozoa of rabbit, mouse, rat, monkey, and human. In these species, actin (F-actin) was detected with the three antibodies between the nucleus and the acrosome of round and elongating spermatids. Species-specific changes occurred in maturing spermatids. In the rabbit, actin labeling decreased and disappeared from the tip to the base of the subacrosomal layer. In testicular and epididymal spermatozoa actin was detected only with a monoclonal antibody (Amersham) successively in the neck, postacrosomal area, and subacrosomal bulges. In mouse late spermatids a transitory labeling of the neck was detected only with the polyclonal antiactin. In testicular and epididymal spermatozoa an actin labeling was observed in the principal piece of the tail. In rat, monkey, and human sperm cells actin remained undetected. These results suggest that there is a redistribution of actin in late spermatids and spermatozoa which is a species-specific process but not an artifact of methodological origin. Thus, a function for actin in sperm, if any, remains to be demonstrated.  相似文献   

18.
Following fusion of sperm and egg, the contents of cortical granules (CG), a kind of special organelle in the egg, release into the perivitelline space (cortical reaction), causing the zona pellucida to become refractory to sperm binding and penetration (zona reaction). Accumulating evidence demonstrates that mammalian cortical reaction is probably mediated by activation of the inositol phosphate (PIP(2)) cascade. The sperm-egg fusion, mediated by GTP-binding protein (G-protein), may elicit the generation of two second messengers, inositol 1,4,5 triphosphate (IP(3)) and diacylglycerol (DAG). The former induces Ca(2+) release from intracellular stores and the latter activates protein kinase C (PKC), leading to CG exocytosis. Calmodulin-dependent kinase II (CaMKII) may act as a switch in the transduction of the calcium signal. The CG exudates cause zona sperm receptor modification and zona hardening, and thus block polyspermic penetration. Oolemma modification after sperm-egg fusion and formation of CG envelope following cortical reaction also contribute to polyspermy block.  相似文献   

19.
Polyspermy is a common phenomenon in the pig. Extensive information has become available from in vitro studies on not only the quality of oocytes but also the quality of spermatozoa. However, little information is available on the relative penetration rates of fresh and frozen spermatozoa from the same ejaculate from boars of different breeds. The present results, based on a total of 15 boars of three different breeds, revealed that the inter-breed variation in fertilization and polyspermic rates is larger than intra-breed variation. It was also shown that the incidence of polyspermy as well as penetration rate was greatly decreased by freezing and thawing, even if a higher number of sperm was coincubated with cumulus-free oocytes for a longer period compared to fresh sperm of the same ejaculate. This study focuses on the cytoskeletal organization of the oocyte with respect to the status of cumulus investment, and monospermic and polyspermic fertilization. The status of cumulus cells correlated with the density of transzonal cumulus-cell processes and with the maturation rate of oocytes and, to some degrees, the incidence of polyspermy. Polyspermic zygotes formed multiple microtubule domains in association with individual male pronuclei (PN), but in a high degree of polyspermy (more than trispermy), the pronuclear apposition did not proceed. The effect of multiple PN of paternal and maternal origin on the cytoskeletal reorganization is also discussed.  相似文献   

20.
Sperm is a highly differentiated cell streamlined for fertilization. The function is thus heavily dependent on the cytoskeletal organization. Conventional methods limit the appreciation and correlation of this intricate cytoskeletal filament network in the context of an entire sperm. Our recent successful localization of nonmuscle myosin IIA on sperm nuclear matrix-intermediate filament (NM-IF) preparations from fertile men by embedment-free electron microscopy (EF-EM), prompted us to investigate the antigenic distribution of two major cytoskeletal proteins-actin and tubulin. The NM-IF preparations were subjected to a cocktail of buffered paraformaldehyde (2%) with a low concentration of glutaraldehyde (0.05%). These proteins were localized by indirect immunogold technique using EF-EM on sperm NM-IF whole mounts. Ultrastructure analysis revealed well preserved centrioles, outer dense fibers, axonemal filaments, and submitochondrial reticulum in the sperm NM-IF. Immunoreactive actin was localized along the length of the sperm whereas beta-tubulin was present in the axoneme alone. The spatial distribution of actin and tubulin in normal human sperm NM-IF reported here together with that of myosin on whole mount offers a powerful technique to understand sperm cytoskeletal supramolecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号