首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在无溶剂无硫酸条件下合成了环氧大豆油,对环氧化合成体系中的羧酸类型、用量及双氧水浓度等影响环氧值的若干因素进行了研究。甲酸的环氧化活性比乙酸和丙烯酸高。通过正交实验确定了最佳合成工艺条件为:m(大豆油)m(甲酸)m(双氧水)为1 0.15 1.0,反应温度60℃,反应时间5~6 h。产品环氧值≥6.20%,残留碘值<6.0%。产品经红外分析表明,在3008 cm-1处的原料C=C双键结构峰消失,在820 cm-1、787 cm-1处呈现出环氧键的伸缩振动的特征吸收峰。  相似文献   

2.
本文对环氧大豆油合成配方与工艺进行了优化。考察了反应物料配比、反应温度、反应时间对产物的环氧值、碘值的影响。通过正交试验,确定环氧大豆油合成的最佳工艺条件:大豆油、甲酸和双氧水的物质的量配比为1∶9∶3,无需添加其他催化剂,搅拌速度为400r/min,反应6h,反应温度55℃左右。在此条件下合成的环氧大豆油的环氧值≥6.8%,碘值≤3.0 g/100 g。产品的外观及色泽均能满足国标要求。  相似文献   

3.
用相转移催化剂对硫酸铝催化法合成环氧大豆油技术进行了改进研究.实验结果表明,比没有改进的硫酸铝催化法合成环氧大豆油产品的环氧值有了很大的提高,同时大大缩短了反应时间,实验确定的最佳投料比为:m(大豆油)∶m(27%双氧水)∶m(甲酸)∶m(硫酸铝)∶m(相转移催化剂)=1∶(0.8~1.0)∶(0.13~0.15)∶(0.075~0.085)∶(0.0001~0.001).环氧大豆油产品环氧值在8.0%左右,酸值为0.40~0.50 mgKOH·g-1,色泽较浅.  相似文献   

4.
用自制的催化剂合成了一种环氧大豆油。通过L16(45)正交试验考察了双氧水用量、催化剂用量、反应时间和反应温度对环氧大豆油环氧值的影响。结果表明:在双氧水用量100份、催化剂用量0.5份(大豆油用量定为100份)、反应温度50℃、反应时间12.5 h的最佳工艺条件下,产品的环氧值为6.58%,碘值为0.83 gI/100g。产品通过红外和核磁共振表征,确定大豆油被环氧化生成环氧大豆油。  相似文献   

5.
以丝瓜络为起始碳源,浓硫酸为磺酸化试剂,制备了丝瓜络基炭磺酸,以该炭磺酸为催化剂,以双氧水为氧源,甲酸为活性氧载体,采用无溶剂法就地合成了环氧大豆油。正交优化实验结果表明:双氧水用量为24 ml、甲酸用量为3.2 ml、催化剂用量为0.7 g、反应温度为65℃、反应时间为3 h,所得产品环氧值6.5%,产品色泽透明。与自制的稀土固体超强酸对比催化实验结果表明:丝瓜络炭磺酸催化剂更加高效、稳定,可以用来改进传统环氧大豆油的制备工艺。  相似文献   

6.
用阳离子树脂作催化剂制备环氧大豆油   总被引:2,自引:0,他引:2  
环氧大豆油是PVC加工的稳定剂兼增塑剂 ,其结构上含环氧环 OCH CH,主要用来改善PVC制品对热和光的稳定性。它与金属稳定剂并用时 ,能长期发挥热稳定和光稳定作用的协同效果 ,且是美国药物管理局批准的唯一可用于食品包装材料的环氧增塑剂。国内采用无溶剂法合成环氧大豆油时 ,主要是用硫酸作催化剂、2 7.5 %~ 5 0 %的双氧水作氧给予体、甲酸作为活性氧载体进行环氧化反应 ,产品的环氧值一般可达 6 .0 %~ 6 .3%。但要制得环氧值高的产品 ,采用强酸性阳离子交换树脂作催化剂 ,可得到环氧值 6 .5 %~ 6 .8%的产品。1 强酸性阳…  相似文献   

7.
何亚三  林仁扎 《应用化工》2012,41(7):1201-1203,1207
制备了含铝5%的负载型Al/SiO2多相催化剂,以其为催化剂,采用改进型无溶剂法工艺合成环氧大豆油。优化工艺条件为:反应时间4 h,大豆油∶甲酸(85%)∶H2O2(30%)=1∶0.2∶0.92(体积比),催化剂用量为2.0 g,反应温度40~60℃,所得产品色泽浅,环氧值高(>6.5%),产品质量优于国家标准,催化剂可重复使用,再生容易,无腐蚀,对环境友好。  相似文献   

8.
以大豆油为原料,在硫酸为催化剂条件下,经甲酸、双氧水环氧化制备环氧化大豆油增塑剂,通过红外光谱、碘值和环氧值对其结构进行表征,红外光谱显示双键特征峰减低,在822.48 cm-1出现环氧特征峰、碘值由136 g/100 g下降到2.31 g/100 g,环氧值由零升到6.754%,并将环氧化大豆油应用于PVC人造革的制备,结果显示:PVC人造革的5%失重温度为297.50℃,高于DOTP的249.17℃,对PVC人造革热稳定性提升,环氧化大豆油和DOTP增塑剂的人造革显示出相似的力学性能和耐迁移、耐抽出性能。  相似文献   

9.
文章采用732#强酸性阳离子交换树脂为催化剂,改进型无溶剂法合成高品质环氧大豆油。实验确定了高品质环氧大豆油的最佳合成条件:采用逐步加料,按m(大豆油):m(88%甲酸):m(30%双氧水):m(催化剂)=1:0.35:1.2:0.15的比例加料,加0.5 mL 1%的EDTA稳定剂,制得的环氧大豆油品质较高。  相似文献   

10.
由硫酸铝催化合成环氧大豆油   总被引:7,自引:0,他引:7  
以硫酸铝作催化剂催化合成环氧大豆油方法可行,反应活性高,比硫酸催化法后处理容易,比阳离子交换树脂催化法成本低。实验投料比为大豆油:双氧水:甲酸:硫酸铝=1:0.27~0.29:0.12~0.15:0.1~0.08,过氧甲酸环氧化温度35℃,环氧化收率96%,环氧大豆油产品环氧值6.17~6.20%,酸值0.44~0.48mgKOH/g。  相似文献   

11.
二乙醇胺开环环氧大豆油制备大豆多元醇及其性能表征   总被引:1,自引:0,他引:1  
以大豆油、冰乙酸和过氧化氢为原料,硫酸为催化剂,合成了不同环氧值的环氧大豆油。再由合成的环氧大豆油与二乙醇胺在四氟硼酸作催化剂的条件下.通过开环加成反应制备了羟基值分别为261mgKOH/g、285mgKOH/g、312mgKOH/g、340mgKOH/g的4种大豆多元醇。用滴定法测定多元醇羟值,用傅立叶变换红外光谱、差示扫描量热法、热重分析法对多元醇进行了分析和表征。结果表明4种多元醇的熔点和热稳定性都随多元醇羟值增大而增大。  相似文献   

12.
Di‐hydroxylated soybean oil (DSO), a biobased polyol synthesized from epoxidized soybean oil (ESO) could be used to formulate resins for adhesives; however, current DSO synthesis requires harsh reaction conditions that significantly increase both cost and waste generation. In this paper, we investigate the kinetics of oxirane cleavage in ESO to DSO by water and elucidate the role of different process parameters in the reaction rate and optimization of reaction conditions. Our kinetic study showed that ESO oxirane cleavage was a first‐order reaction and that the ESO oxirane cleavage rate was greatly influenced by tetrahydrofuran (THF)/ESO ratio, H2O/ESO ratio, catalyst content, and temperature. Optimized reaction parameters were THF/ESO of 0.5, H2O/ESO of 0.25, catalyst content of 1.5 %, and reaction time of 3 h at 25 °C. DSO with hydroxyl value of 242 mg KOH/g was obtained under these conditions. We also characterized the structure, thermal properties, adhesion performance, and viscoelasticity of UV‐polymerized resins based on this DSO. The resin tape exhibited peel adhesion strength of 3.6 N/in., which is comparable to some commercial tapes measured under similar conditions.  相似文献   

13.
李科  蒋剑春  聂小安  陈洁 《化工进展》2018,37(Z1):173-180
选用常用来合成环氧大豆油和环氧脂肪酸甲酯的大豆油为原料,运用GC-MS联用仪测定了其组成及含量,并通过酯交换、环氧化等工艺合成了具有环氧结构的环氧长短链酰基甘油酯(环氧低热油);并对其作为聚氯乙烯增塑剂的各项性能进行了研究。结果表明,大豆油不饱和脂肪酸含量达88.5%,当其与三乙酸甘油酯在物质的量之比为1∶1的情况下可得到以二脂肪酸单乙酸酯为主要成分的低热油;此外,通过物化性能、动态热机械分析、薄膜拉伸、热重-红外-质谱及热分解动力学等手段分析,结果表明环氧低热油的玻璃化转变温度为–0.77℃,低于环氧大豆油的6.13℃;其断裂伸长率为370.56%,也高于环氧大豆油321.11%;与环氧脂肪酸甲酯相比具有更高的闪点、较少的加热减量和更优良的热稳定性。所以环氧低热油是一种较为优良的增塑剂产品。  相似文献   

14.
The synthesis of epoxidized soybean oil acrylate (ESOA) from epoxidized soybean oil (ESO) had been carried out by reacting acrylic acid with the oxirane group in ESO. The acrylated ESO products were characterized using a variety of analytical techniques. The oxygen value, iodine value, and acid value were obtained to know the amount of unsaturation in the synthesized product. Infrared and proton NMR spectra were carried out to confirm the participation of oxirane group in the acrylation reaction. Free‐radical initiators, benzoyl peroxide and tertiary butyl peroxy benzoate, were used for the curing of ESOA resin. Thermal decomposition kinetics of ESOA was studied by the methods of Ozawa, Kissinger, and Horowitz‐Metzger, and the kinetic parameters were compared. The thermal decomposition data of the cured ESOA resin was analyzed by thermogravimetric analysis (TGA) at different heating rates. TG curves showed that the thermal decomposition of the ESOA system occurred in one stage. The apparent activation energies determined by the Ozawa, Kissinger, and Horowitz‐Metzger methods are 122.69, 95.347, and 126.20 kJ/mol, respectively. The results show that there was a reasonably good agreement between the calculated activation energies for stage one in the above methods. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Dihydroxyl soybean oil (DSO) has shown potential as a tackifier for pressure-sensitive adhesive (PSA) applications, and perchloric acid was used previously as a catalyst to open the oxirane rings of epoxidized soybean oils (ESO) when we prepared DSO and PSA. Phosphoric acid is a more eco-friendly catalyst than perchloric acid; therefore, the objective of this work was to prepare DSO using phosphoric acid as a catalyst and thereby create DSO-contained phosphate esters, or PDSO. The chemical scaffolds of PDSO were elucidated with 1H, 1H–1H COSY, 31P NMR, FTIR, MALDI-TOF MS, and GPC. ESO PSAs were prepared from a mixture of ESO/PDSO. The ESO PSA prepared with PDSO had peel strength on a plastic carrier comparable to commercial PSA, and while on an aluminum carrier, the ESO PSA had a stronger peel strength. ESO PSA prepared with phosphoric acid was also stronger than the peel strength of the ESO PSA prepared with DSO using perchloric acid.  相似文献   

16.
大豆油与过氧甲酸的环氧化动力学研究   总被引:1,自引:0,他引:1  
通过大豆油中的双键与过氧酸发生环氧化反应,合成了环氧大豆油(ESO)。从动力学的角度,对反应过程中的各种影响因素,进行了较详细的研究。得知大豆油与过氧甲酸反应,大豆油的反应级数为1级,过氧甲酸的反应级数为2级,其反应活化能为22.77 kJ/mol。生成的环氧大豆油与体系内的甲酸发生水解开环反应,环氧大豆油的反应级数为0.5级,甲酸的反应级数为1级,该反应活化能为4.91 kJ/mol。通过所得动力学参数设定了无催化剂的环氧大豆油合成工艺,得到了环氧值高达6.85的环氧大豆油。  相似文献   

17.
In this study, bio‐based epoxy materials containing functionalized plant oil, such as epoxidized soybean oil (ESO) and epoxidized linseed oil (ELO), were processed with 4‐methylhexahydrophthalic anhydride (MHPA) as a curing agent. In the presence of tetraethylammonium bromide, the curing reaction of epoxidized plant oil and MHPA proceeded at 130 °C to give transparent plant oil‐based epoxy materials. The resulting bio‐based epoxy materials exhibited relatively soft and flexible characters, due to the aliphatic chains of plant oil. The thermal and mechanical properties of the ESO/MHPA polymers depended on the feed molar ratio of anhydride to oxirane. The mechanical properties such as tensile strength and Young's modulus of the ELO/MHPA polymer increased, compared with those of the ESO/MHPA polymer. The glass transition temperature of the ELO/MHPA polymer was higher than that of the ESO/MHPA polymer, because of the high oxirane number of ELO. Furthermore, the ELO/MHPA polymer showed excellent shape memory property.  相似文献   

18.
以甲酸为CO来源,常压下浓硫酸催化将叔丁醇羰基化得到三甲基乙酸。考察了醇酸配比、硫酸用量、反应温度、反应时间对三甲基乙酸收率的影响。结果表明,反应最优工艺条件为:n(叔丁醇)∶n(甲酸)∶n(浓硫酸)摩尔比=1∶1.5∶6.6,反应温度为30℃,反应时间为180 m in,三甲基乙酸的平均收率高达75.04%。  相似文献   

19.
Epoxidized soybean oil (ESBO), is one of the most commonly used epoxides because of its typical combined roles as a plasticizer and heat stabilizer. In this study, a novel plasticizer of poly(vinyl chloride) (PVC) resins, epoxidized sunflower oil (ESO), was synthesized, and its performance was evaluated. ESO was designed to act as a coplasticizer and a heat stabilizer like ESBO. ESO is used as organic coplasticizer for plasticized PVC containing Ca and Zn stearates as primary stabilizers and stearic acid as lubricant. Di‐(2‐ethylhexyl) phthalate (DEHP), a conventional plasticizer for PVC, was partially replaced by ESO. Mechanical properties (tensile and shore D hardness) were investigated. The performance of ESO to ESB0 (20 g) for comparison, indicated that ESO could be used as secondary plasticizer for PVC in combination with DEHP. All mechanical and dynamical properties of plasticized PVC sheets varied with the oxirane oxygen of the ESO. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号