首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Splicing of alternative exon 6 to invariant exons 2, 3, and 4 in acetylcholinesterase (AChE) pre-mRNA results in expression of the prevailing enzyme species in the nervous system and at the neuromuscular junction of skeletal muscle. The structural determinants controlling splice selection are examined in differentiating C2-C12 muscle cells by selective intron deletion from and site-directed mutagenesis in the Ache gene. Transfection of a plasmid lacking two invariant introns (introns II and III) within the open reading frame of the Ache gene, located 5' of the alternative splice region, resulted in alternatively spliced mRNAs encoding enzyme forms not found endogenously in myotubes. Retention of either intron II or III is sufficient to control the tissue-specific pre-mRNA splicing pattern prevalent in situ. Further deletions and branch point mutations revealed that upstream splicing, but not the secondary structure of AChE pre-mRNA, is the determining factor in the splice selection. In addition, deletion of the alternative intron between the splice donor site and alternative acceptor sites resulted in aberrant upstream splicing. Thus, selective splicing of AChE pre-mRNA during myogenesis occurs in an ordered recognition sequence in which the alternative intron influences the fidelity of correct upstream splicing, which, in turn, determines the downstream splice selection of alternative exons.  相似文献   

2.
3.
The alternatively spliced 290-nucleotide NS2-specific exon of the parvovirus minute virus of mice (MVM), which is flanked by a large intron upstream and a small intron downstream, constitutively appears both in the R1 mRNA as part of a large 5'-terminal exon (where it is translated in open reading frame 3 [ORF3]), and in the R2 mRNA as an internal exon (where it is translated in ORF2). We have identified a novel bipartite exon enhancer element, composed of CA-rich and purine-rich elements within the 5' and 3' regions of the exon, respectively, that is required to include NS2-specific exon sequences in mature spliced mRNA in vivo. These two compositionally different enhancer elements are somewhat redundant in function: either element alone can at least partially support exon inclusion. They are also interchangeable: either element can function at either position. Either a strong 3' splice site upstream (i.e., the exon 5' terminus) or a strong 5' splice site downstream (i.e., the exon 3' terminus) is sufficient to prevent skipping of the NS2-specific exon, and a functional upstream 3' splice site is required for inclusion of the NS2-specific exon as an internal exon into the mature, doubly spliced R2 mRNA. The bipartite enhancer functionally strengthens these termini: the requirement for both the CA-rich and purine-rich elements can be overcome by improvements to the polypyrimidine tract of the upstream intron 3' splice site, and the purine-rich element also supports exon inclusion mediated through the downstream 5' splice sites. In summary, a suboptimal large-intron polypyrimidine tract, sequences within the downstream small intron, and a novel bipartite exonic enhancer operate together to yield the balanced levels of R1 and R2 observed in vivo. We suggest that the unusual bipartite exonic enhancer functions to mediate proper levels of inclusion of the NS2-specific exon in both singly spliced R1 and doubly spliced R2.  相似文献   

4.
5.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

6.
The fibronectin EIIIB exon is alternatively spliced in a cell-type-specific manner, and TGCATG repeats in the intron downstream of EIIIB have been implicated in this regulation. Analysis of the intron sequence from several vertebrates shows that the pattern of repeats in the 3' half of the intron is evolutionarily conserved. Point mutations in certain highly conserved repeats greatly reduce EIIIB inclusion, suggesting that a multicomponent complex may recognize the repeats. Expression of the SR protein SRp40, SRp20, or ASF/SF2 stimulates EIIIB inclusion. Studies of the interplay between mutations in the repeats and SRp40-stimulated inclusion suggest that the repeats are recognized in many, if not all, cell types, and that EIIIB inclusion may be regulated by quantitative changes in multiple factors.  相似文献   

7.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

8.
9.
10.
EDA is a facultative type III homology of human fibronectin encoded by an alternative spliced exon. The EDA+ and EDA- mRNA forms show a cell type specific distribution with their relative proportion varying during development, aging and oncogenic transformation. We have previously demonstrated that an 81 bp nucleotide sequence within the exon itself is essential for differential RNA processing. Fine mapping of cis acting elements within this region has been carried out to identify possible target sites for the modulation of alternative splicing. There are at least two short nucleotide sequences involved. Element A (GAAGAAGA) is a positive modulator for the recognition of the exon, its deletion results in constitutive exclusion of the EDA exon. Element B (CAAGG) is a negative modulator for exon recognition, its deletion results in constitutive inclusion of the EDA exon. This bipartite structure of the splicing enhancer is a novel feature of the mammalian exons.  相似文献   

11.
12.
A minor class of metazoan introns has well-conserved splice sites with 5'-AU-AC-3' boundaries, compared to the 5'-GU-AG-3' boundaries and degenerate splice sites of conventional introns. Splicing of the AT-AC intron 2 of a sodium channel (SCN4A) precursor messenger RNA in vitro did not require inhibition of conventional splicing and required adenosine triphosphate, magnesium, and U12 small nuclear RNA (snRNA). When exon 3 was followed by the 5' splice site from the downstream conventional intron, splicing of intron 2 was greatly stimulated. This effect was U1 snRNA-dependent, unlike the basal AT-AC splicing reaction. Therefore, U1-mediated exon definition interactions can coordinate the activities of major and minor spliceosomes.  相似文献   

13.
Pre-mRNA splicing in plants, while generally similar to the processes in vertebrates and yeast, is thought to involve plant specific cis-acting elements. Both monocot and dicot introns are typically strongly enriched in U nucleotides, and AU- or U-rich segments are thought to be involved in intron recognition, splice site selection, and splicing efficiency. We have applied logitlinear models to find optimal combinations of splice site variables for the purpose of separating true splice sites from a large excess of potential sites. It is shown that plant splice site prediction from sequence inspection is greatly improved when compositional contrast between exons and introns is considered in addition to degree of matching to the splice site consensus (signal quality). The best model involves subclassification of splice sites according to the identity of the base immediately upstream of the GU and AG signals and gives substantial performance gains compared with conventional profile methods.  相似文献   

14.
A conserved 3' splice site YAG is essential for the second step of pre-mRNA splicing but no trans-acting factor recognizing this sequence has been found. A direct, non-Watson-Crick interaction between the intron terminal nucleotides was suggested to affect YAG selection. The mechanism of YAG recognition was proposed to involve 5' to 3' scanning originating from the branchpoint or the polypyrimidine tract. We have constructed a yeast intron harbouring two closely spaced 3' splice sites. Preferential selection of a wild-type site over mutant ones indicated that the two sites are competing. For two identical sequences, the proximal site is selected. As previously observed, an A at the first intron nucleotide spliced most efficiently with a 3' splice site UAC. In this context, UAA or UAU were also more efficient 3' splice sites than UAG and competed more efficiently than the wild-type sequence with a 3' splice site UAC. We observed that a U at the first intron nucleotide is used for splicing in combination with 3' splice sites UAG, UAA or UAU. Our data indicate that the 3' splice site is not primarily selected through an interaction with the first intron nucleotide. Selection of the 3' splice site depends critically on its distance from the branchpoint but does not occur by a simple leaky scanning mechanism.  相似文献   

15.
Amyloid deposition characterizes the pathological lesions of Alzheimer's disease. We investigated the effect of serum deprivation on the regulation of beta-amyloid precursor protein (APP) mRNA expression in C6 glioma cells. Serum deprivation increased APP mRNA levels approximately 4-fold over controls. This increase was accompanied by changes in the pattern of alternative splicing, including the novel alternatively spliced site at exon 15. The proportion of isoforms containing exons 7 and 8 significantly increased from 61% to 68%, while isoforms lacking these exons decreased from 14% to 8%. The proportion of leukocyte-derived APP, which is a novel alternatively spliced isoform lacking exon 15, significantly increased from 19% to 40%. Among the six major isoforms produced by the two independent splicing sites, L-APP752 which contains exons 7 and 8, but lacks exon 15, increased the most (approximately 10-fold). Our findings provide evidence linking APP expression to alterations in alternative splicing at exon 15. These results demonstrate that in glial cells, APP mRNA regulation involves the alteration in alternative splicing at exons 7, 8 and 15, suggesting that not only increased expression but also an imbalance in the relative abundance of the six APP isoforms in stressed condition might affect the amyloidogenesis in Alzheimer's disease.  相似文献   

16.
The involvement of exon sequences in splice site selection was studied in vivo in HeLa cells transfected with a series of model three exon-two intron pre-mRNAs which differed only in the sequence of their internal exons. When the majority of the human globin-derived 175-nucleotide internal exon (DUP175) was replaced with a sequence from the yeast URA3 gene (DUP184), the splicing pathway changed from complete inclusion of the internal exon in DUP175 to its predominant skipping in the DUP184 construct. Skipping of the exon was reversed by increasing the strength of its flanking splicing elements indicating that exon sequences exert their effect only in the presence of relatively weak splicing signals. A series of block mutations in the internal exon of DUP184 showed that a stretch of 6 cytidine nucleotides increased the inclusion of the DUP184 internal exon about 7-fold. Mutations generating purine-rich sequences (AAG and GAAG) at the 3' end of the exon led to complete exon inclusion while stepwise insertion of sequences from the internal exon of DUP175 into the DUP184 background increased exon inclusion 5-fold. Combination of the stretch of cytidines with sequences derived from DUP175 exon resulted in complete exon inclusion indicating that diverse signals within exons may cooperate with each other in affecting splice site selection.  相似文献   

17.
Group II intron splicing in vivo by first-step hydrolysis   总被引:1,自引:0,他引:1  
Group I, group II and spliceosomal introns splice by two sequential transesterification reactions. For both spliceosomal and group II introns, the first-step reaction occurs by nucleophilic attack on the 5' splice junction by the 2' hydroxyl of an internal adenosine, forming a 2'-5' phosphodiester branch in the intron. The second reaction joins the two exons with a 3'-5' phosphodiester bond and releases intron lariat. In vitro, group II introns can self-splice by an efficient alternative pathway in which the first-step reaction occurs by hydrolysis. The resulting linear splicing intermediate participates in normal second-step reactions, forming spliced exon and linear intron RNAs. Here we show that the group II intron first-step hydrolysis reaction occurs in vivo in place of transesterification in the mitochondria of yeast strains containing branch-site mutations. As expected, the mutations block branching, but surprisingly still allow accurate splicing. This hydrolysis pathway may have been a step in the evolution of splicing mechanisms.  相似文献   

18.
19.
Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.  相似文献   

20.
We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another. The presence of excess RNAs containing these enhancers could effectively inhibit in vitro pre-mRNA splicing reactions in a substrate-dependent manner and, at lower concentrations of competitor RNA, the addition of SR proteins could relieve the inhibition. However, when extracts were depleted by incubation with biotinylated exon 2 RNAs followed by passage over streptavidin agarose, SR proteins were not sufficient to restore splicing. Instead, both SR proteins and fractions containing a 110-kD protein were necessary to rescue splicing. Using gel mobility shift assays, we show that formation of stable enhancer-specific complexes on alpha-tropomyosin exon 2 requires the presence of both SR proteins and the 110-kD protein. By analogy to the doublesex exon enhancer elements in Drosophila, our results suggest that assembly of mammalian exon enhancer complexes requires both SR and non-SR proteins to activate selection of weak splice sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号