首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, laboratory scale experiments were conducted to investigate the nitrogen removal from pharmaceutical manufacturing wastewater. The results indicate that by selective inhibition of free ammonia on oxidizers, nitrogen removal can be achieved by nitritation and denitritation process. The nitrite ratio was above 98% in the aerobic stage and the nitrogen removal efficiency was about 99%. The complete ammonia removal corresponded exactly to the "Ammonia Valley" in the pH versus time graphic and the anoxic reaction was completed when the "Nitrite Knee" appeared in the ORP versus time graphic. Optimization of the SBR cycle by step-feed and on-line control with pH and ORP strategy allowed the carbon and energy saving. The easy operation and the low cost make the SBR system an interesting option for the biological nitrogen removal from the pharmaceutical manufacturing wastewater.  相似文献   

2.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

3.
Nitrogen removal from sludge reject water was obtained by oxygen-limited partial nitritation resulting in nitrite accumulation in a first stage, followed by autotrophic denitrification of nitrite with ammonium as electron donor (similar to anaerobic ammonium oxidation) in a second stage. Two membrane-assisted bioreactors (MBRs) were used in series to operate with high sludge ages and subsequent high volumetric loading rates, achieving 1.45 kg N m(-3) day(-1) for the partial nitritation MBR and 1.1 kg N m(-3) day(-1) for the anaerobic ammonium oxidation MBR. Biomass retention in the nitritation stage ensured flexibility towards loading rate and operating temperature. Nitrite oxidisers were out-competed at low oxygen and high free ammonia concentration. Biomass retention in the second MBR prevented wash-out of the slowly growing bacteria. Nitrite and ammonium were converted to dinitrogen gas in a reaction ratio of 1.05, thereby maintaining nitrite limitation to assure process stability. The anoxic consortium catalysing the autotrophic denitrification process consisted of Nitrosomonas-like aerobic ammonium oxidizers and anaerobic ammonium oxidizing bacteria closely related to Kuenenia stuttgartiensis. The overall removal efficiency of the combined process was 82% of the incoming ammonium according to a total nitrogen removal rate of 0.55 kg N m(-3) day(-1), without adding extra carbon source.  相似文献   

4.
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.  相似文献   

5.
A simple apparatus was designed to collect ammonia gas coming out from waste stabilization ponds (WSP). The apparatus has a capture chamber and an absorption system, which were optimized under laboratory conditions prior to being used to assess ammonia volatilization rates in a pilot-scale maturation pond during summer 2005. Under laboratory conditions (water temperature = 17.1 degrees C and pH = 10.1), the average ammonia volatilization rate was 2,517 g NH3-N/ha d and the apparatus absorbed 79% of volatilized ammonia. On site, the mean ammonia volatilization rate was 15 g N/ha d, which corresponds to 3% of the total nitrogen removed (531 g N/ha d) in the maturation pond studied. A net nitrogen mass balance showed that ammonia volatilization was not the most important mechanism involved in either total nitrogen or ammonia removal. Nitrogen fractions (suspended organic nitrogen, soluble organic nitrogen, ammonia, nitrite and nitrate) from the M1 influent and effluent showed that ammonia is removed by biological (mainly algal) uptake and total nitrogen removal by sedimentation of dead algal biomass.  相似文献   

6.
CASS工艺处理高氨氮污水的脱氮设计   总被引:3,自引:0,他引:3  
重点介绍了改进的CASS工艺处理高氨氮污水的脱氮设计和运行参数,如C/N、回流比、DO、曝气时间和控制方式等的变化对脱氮效果的影响,并在此基础上给出了各参数的设计计算方法。随后的试验研究表明,改进的CASS工艺克服了传统设计的不足,在有效去除水中有机物的同时,脱氮效果良好。  相似文献   

7.
焦化废水含有酚类、氰化物、氨氮等有毒有害污染物,属于高浓度难降解有机工业废水之一.以某焦化厂的蒸氨处理工程为例,根据现场调试过程中总结的调试方案及运行结果,阐述了蒸氨塔处理高浓度剩余氨水的功效、蒸氨塔系统的设备选型以及蒸氨系统的操作方法和操作条件;总结了蒸氨塔在使用过程中可能出现的问题及解决措施.  相似文献   

8.
The sequencing batch reactor (SBR) process concept was applied to achieve efficient ammonium removal via nitrite under both laboratory and pilot-scale conditions. Both sets of experimental results show that without pH control or carbon addition the nitritation process consistently converted approximately 50% of the ammonium from biosolids dewatering liquids to nitrite with hydraulic retention times (HRT) as short as 10 h. The results from the pilot-scale study also indicate that the selective oxidation of ammonium to nitrite is a reliable process as the accumulation of nitrate was never an issue during a 330-day trial. The SBR process concept was extended to achieve complete nitrogen removal through nitritation and denitritation in the laboratory scale. The experimental results indicate that a total reduction of 96-98% of the ammonium nitrogen from biosolids dewatering liquids (influent concentration typically 1,200 g m(-3)) was achieved with a short HRT of 1.1 d and a removal rate of 1.05 kgNm(-3)d(-1). This process concept was tested at pilot scale where the nitritation process could be started up without temperature control in a short period of time. Nitrogen removal rates up to 1.2 kgNm(-3)d(-1) at an HRT of 0.88 d have been obtained. COD to nitrogen ratios required in the pilot plant were consistently in the range 1.6-1.9 kgCOD kg(-1)N removed.  相似文献   

9.
USFB在高浓度制药废水处理工程中的应用   总被引:1,自引:1,他引:0  
USFB厌氧工艺是新一代厌氧生物处理技术,具有高负荷、高去除率、投资小、可作为能源净生产等优点。某医药化工厂生产废水具有pH低、CODCr高、成分复杂、色度深、无机盐含量高等特点。采用USFB—深曝—兼氧—A/O—高级氧化—澄清—快滤工艺对其进行处理,工程实践表明,出水CODCr稳定在100mg/L以下,达到《污水综合排放标准》(GB8978—1996)一级标准。  相似文献   

10.
The feasibility of combining a previously reported storage driven denitrification biofilm, where 80% of influent acetate can be converted to poly-beta-hydroxybutyrate (PHB), with a suitable nitrification reactor, either submerged or trickling filter design, to achieve complete biological nitrogen removal was tested. The reactor system showed the potential of complete biological nitrogen removal of waste streams with a C/N ratio as low as 3.93 kg COD/kg N-NH3 at an overall nitrogen removal rate of 1.1 mmole NH3/L/h. While the efficiency and the rates of nitrogen removal were higher than what is observed in traditional or simultaneous nitrification and denitrification (SND) systems, there were two problems that require further development: (a) the incomplete draining of the reactor caused ammonia retention and release in the effluent, limiting the overall N-removal and (b) pH drifts in the nitrification step slowed down the rate of nitrification if not corrected by appropriate pH adjustment or buffering.  相似文献   

11.
Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.  相似文献   

12.
钢渣去除高含磷选矿废水中磷的研究   总被引:1,自引:0,他引:1  
通过静态试验,研究了钢渣对模拟选矿废水中总磷的去除及机理。探讨了影响其除磷的因素如温度、接触时间、pH、钢渣粒径、钢渣用量、磷的初始浓度等。结果表明,钢渣有很好的除磷效果。当模拟选矿废水的初始pH=7时,初始总磷浓度为50mg/L,投入足量(4g钢渣/L废水),粒径为140目的钢渣,钢渣对总磷的去除率可达到99%以上,钢渣对磷的平衡吸附量最大达到22.16mg/g。其吸附规律符合Freundlich经验公式,钢渣除磷的方式主要包括物理吸附和化学沉淀作用,当废水pH7时,钢渣对磷的除去作用以化学沉淀作用为主。  相似文献   

13.
张宗农  孟了 《给水排水》2008,34(4):22-27
氨氮浓度高是垃圾渗滤液的水质特征之一,目前对于高浓度氨氮废水的处理方法主要有硝化—反硝化、氨吹脱法、化学沉淀法以及新型生物脱氮技术。基于工程实例,对国内外已有的去除垃圾渗滤液高浓度氨氮的方法进行了阐述和对比,并对渗滤液处理厂脱氮方式的选择提出了建议。  相似文献   

14.
As part of a study examining the efficacy of high-rate algal pond treatment of high-strength abattoir wastewater, the impact of pond configuration and loading rate on nitrification was determined. The extent of nitrification in all ponds was consistent with mass balance estimates of oxygen demand and availability. Deeper ponds were more stable nitrifying systems, with shallow ponds displaying greater variation in response to changes in nitrogen loading. In a separate experiment the pond system was modified by covering a part of an in-series HRAP to exclude light, providing conditions suitable for denitrification. Specific denitrification rates were often within the range typical for endogenous carbon sources, with mass balance calculations indicating removals of up to 95%.  相似文献   

15.
This study was performed to evaluate the effects of the volume fraction of an anaerobic reactor (VFAR) and SRT on the removal of T-N and T-P in both an intermittently aerated system (IAS) and intermittently aerated dynamic-flow system (IADS), respectively. When the VFAR in the total volume of reactor from both IAS and IADS are 13%, 7%, and 0% at 5 days of SRT, the removal efficiencies of T-P were 80-87%, 62-65% and <30%, respectively. However, it was observed from this study that the removal efficiencies of T-N and T-P were not correlated to VFAR at a predetermined SRT, producing greater than 5000 mg/L of MLVSS. Also, IADS was shown to have the greater buffer capacity and adaptability to resist the shock due to the loading of high concentration of N. Furthermore, IADS achieved over 80% of removal efficiency of N even at much lower C/N ratio of 4.7. Therefore, it seems that IADS has the significant advantages over other biological nutrients removal processes.  相似文献   

16.
Partial nitrification combined with Anammox in a single reactor (the CANON process) is an energy-efficient N-removal technology that could substantially lower the N-load of a WWTP by separate treatment of nitrogen-rich side streams, preventing the need for extensive expansion and reducing the total energy requirement. This study looks at the enrichment of Anammox from activated sludge and its application in the CANON process on lab-scale. The aim was to identify the critical process control parameters necessary for successful operation of CANON. An Anammox culture capable of removing 0.6 kg N/m3/d was enriched in 14 weeks in a sequencing batch reactor. Nitrifying biomass was inoculated into the Anammox reactor (10% v/v) together with limited oxygen supply (< 8 mL/min) to initiate the CANON process in continuous culture. The small flocs formed by the biomass (< 1000 microm) were sensitive to low O2 concentrations (< 0.1 mg/L) which prevented simultaneous nitrification and Anammox. Operation with 20 min aerobiosis and 30 min anaerobiosis was necessary to achieve sustained, completely autotrophic N-removal for an extended period at a rate of 0.08 kg N/m3/d. Essential process control parameters for stable CANON operation were the nitrite concentration, oxygen concentration, pH and the temperature.  相似文献   

17.
A primary maturation pond (M1) was spiked with labelled ammonium chloride (15NH4Cl) to track ammonium transformations associated with algal uptake and subsequent sedimentation. Conventional sampling based on grab samples collected from M1 influent, water column and effluent, and processed for unfiltered and filtered TKN, ammonium, nitrite and nitrate, found low total nitrogen removal (8%) and high ammonium nitrogen removal (90%). Stable isotope analysis of 15N from suspended organic and ammonium nitrogen fractions in M1 effluent revealed that labelled ammonium was mainly found in the organic fraction (69% of the 15N recovered), rather than the inorganic fraction (5%). Algal uptake was the predominant pathway for ammonia removal, even though conditions were favourable for ammonia volatilization (8.9 < pH <10.1 units, 15.2 < temperature <18.8 degrees C). Total nitrogen was removed by ammonia volatilization at 15 g N/ha d (3%), organic nitrogen sedimentation at 105 g N/ha d (20%), and in-pond accumulation due to algal uptake at 377 g N/ha d (71%). Algal uptake of ammonium and subsequent sedimentation and retention in the benthic sludge, after partial ammonification of the algal organic nitrogen, is thus likely to be the dominant mechanism for permanent nitrogen removal in maturation ponds during warm summer months in England.  相似文献   

18.
We report on a novel process for total nitrogen (TN) removal, the hybrid membrane biofilm process (HMBP). The HMBP uses air-supplying hollow-fibre membranes inside an activated sludge tank, with suppressed aeration, to allow concurrent nitrification and denitrification. We hypothesised that a nitrifying biofilm would form on the membranes, and that the low bulk-liquid BOD concentrations would encourage heterotrophic denitrifying bacteria to grow in suspension. A nitrifying biofilm was initially established by supplying an influent ammonia concentration of 20 mgN/L. Subsequently, 120 mg/L acetate was added to the influent as BOD. With a bulk-liquid SRT of only 5 days, nitrification rates were 0.85 gN/m(2) per day and the TN removal reached 75%. The biofilm thickness was approximately 500 lim. We used DGGE to obtain a microbial community fingerprint of suspended and attached growth, and prepared a clone library. The DGGE results, along with the clone library and operating data, suggest that nitrifying bacteria were primarily attached to the membranes, while heterotrophic bacteria were predominant in the bulk liquid. Our results demonstrate that the HMBP is effective for TN removal, achieving high levels of nitrification with a low bulk-liquid SRT and concurrently denitrifying with BOD as the sole electron donor.  相似文献   

19.
A stable achievement of nitritation with strong nitrogenous wastewaters is considered as a difficult task in practice, probably due to the fate of interaction between dominating heterotrophs and nitrifier species. An experimental study was carried out to examine the organic effects in lab-scale biofilm nitritation reactors. The control unit without organic addition showed a stable nitritation performance for more than 220 days of operating period. The nitritation activity gradually failed at the reactors with an organic addition, but the nitritation activity eventually recovered with a prolonged aeration. It was not possible to explain the nitritation recovery with neither free ammonia inhibition concept nor DO competition hypothesis in these cases. The results suggest that the nitritation with organic requires a long start-up period for acclimation. In addition, the results of quinone profile analysis were in agreement with nitritation activity in reactors. The diversity of microbial community in the nitritation reactors could be described by the quinone profiles.  相似文献   

20.
Nitrogen removal from piggery waste with anaerobic pretreatment.   总被引:1,自引:0,他引:1  
Aerobic degradation of high strength piggery waste elevated the reactor temperature inhibiting nitrification. This study included anaerobic pretreatment with various influent by-pass rates to control the temperature and to minimize the external carbon requirement for denitrification. To find the optimum operating conditions, both lab-scale AnSBR (anaerobic sequencing batch reactor) and Ax/Ox (anoxic/oxic) SBR were operated at 35 degrees C. The heat energy released from Ax/Ox SBR was assumed to be used for heating the AnSBR, with which the Ax/Ox reactor temperature could successfully be controlled below 40 degrees C. The optimum rates of by-pass were 1.0 for winter, 0.4 for spring/fall and 0.2-0.4 for summer, respectively. Applying the correction factors for the measured AUR2 (nitrite nitrification rate) and AUR (nitrate nitrification) at the predicted temperatures, the required oxic HRTs were computed. The required Ax/Ox HRT ratios were respectively 0.5 for COD/TKN>8, 1.0 for COD/TKN ratio of 5.5-8 and 3.5 for below 5.5. The optimum HRTs were 16 days for AnSBR and 17 days for Ax/Ox SBR with the corrected AUR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号