共查询到20条相似文献,搜索用时 15 毫秒
1.
二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避现象”的主要原因之一. 工业现场多采用离线化验手段检测DXN浓度, 难以满足污染物减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流程系统过程变量的潜在特征, 并依据预设贡献率阈值进行特征初选; 接着, 采用互信息(Mutual information, MI)度量初选特征与DXN间的相关性, 并自适应确定再选的上下限及阈值; 最后, 采用具有超参数自适应选择机制的最小二乘−支持向量机(Least squares — support vector machine, LS-SVM)算法建立多源特征的候选子模型, 基于分支定界(Branch and bound, BB)优化和预测误差信息熵加权算法进行集成子模型的优化选择和加权组合, 进而得到软测量模型. 基于某MSWI焚烧厂DXN检测数据仿真验证了所提方法的有效性. 相似文献
2.
气流干燥是闪速熔炼的关键工序之一,控制干燥后精矿的含水率在0.1%~0.3%之间是稳定熔炼生产的前提;由于水份含量人工检测的时间间隔较长,很难及时反映生产实际,影响干燥过程的优化控制;采用主元分析的方法,建立了水份含量的主元回归模型,并利用BP神经网络模型进行误差修正,实现对干精矿含水率的软测量;实际应用表明,该集成模型精度高,能满足工业生产要求. 相似文献
3.
4.
《计算机与应用化学》2017,(1)
软测量技术是石化生产过程中在线监测油品难测性质的重要手段。本文提出了一种基于NARX神经网络的软测量仪表用于原油蒸馏装置中油品关键性质的在线预测。首先,利用流程模拟软件建立了原油蒸馏过程的动态模型。然后,基于动态模型的阶跃实验数据,建立了以装置操作变量为输入、油品关键性质为输出的NARX神经网络预测模型,并提出能有效减少模型预测误差的修正方法。仿真实验结果表明,所提出的误差修正方法可明显减少预测结果中的"大误差点",降低根均方误差,因此,所建立的软测量仪表可用于油品关键性质的在线预测。 相似文献
5.
针对谷氨酸发酵过程一些关键参数不能在线测量而导致的建模精度不高的问题,Bagging和高斯过程回归算法相结合,提出一种基于Bagging算法集成高斯过程的软测量建模方法。该算法使用Bagging技术从训练样本集中选取若干子训练样本集,利用该若干子集形成许多高斯过程模型,并通过平均组合方式进行集成,得到最终的模型输出。将该集成算法应用到谷氨酸发酵过程的软测量建模中,实现了对谷氨酸浓度的准确预测,相对于单一高斯过程模型,具有更高的预测精度和鲁棒性。 相似文献
6.
7.
由于工业过程具有强非线性、动态特性与慢时变性, 其完整性建模相对较难. 针对工业过程的现有软测量技术并未综合考虑过程的非线性和动态特性, 本文提出了一种依赖模型阶次的GRU(MOb–GRU)神经网络软测量模型, 针对非线性动态过程进行全动态建模. 首先, 在MOb–GRU的结构选择上, 本文根据所研究实际对象的动态特性复杂程度确定网络的总模块数. 另外, MOb–GRU能灵活设置反向更新的单元数, 这种设置打破了传统GRU只能从第1个模块开始输出的限制. 其次, 为使记忆网络以较快的速率收敛到最优, 本文分别设计了基于自适应学习率和学习率矩阵的网络训练算法. 接着, 仿真实验分别选取了典型的单变量与多变量非线性动态过程, 并采用MOb–GRU神经网络对其进行建模和预测. 最后, 仿真结果证实了MOb–GRU网络结构的合理性以及训练算法的高效性. 相似文献
8.
9.
一种选择性神经网络集成构造方法 总被引:17,自引:2,他引:17
提出了一种选择性神经网络集成构造方法,在训练出个体神经网络之后,使用遗传算法部分网络来组成神经网络集成。理论分析和实验结果表明,与传统的使用所有体网络的方法相比,该方法能够取得更好的效果。 相似文献
10.
针对风洞流量测量中传统静态软测量模型估计精度低、鲁棒性差等问题,提出了注意力机制(Attention mechanism, Attention)、长短时记忆神经网络(Long short-term memory, LSTM)和卡尔曼滤波(Kalman filtering, Kalman)结合的Attention-LSTM-Kalman软测量模型:通过LSTM网络建立静态软测量模型,在此基础上,提出一种基于注意力机制的改进方案,考虑到系统的动态特性,使用卡尔曼滤波动态调整软测量模型输出序列。实验结果表明,静态预测模型LSTM的预测效果优于循环神经网络(Recurrent neural network, RNN)和门控循环单元(Gated recurrent unit, GRU)等模型;基于LSTM、Attention-LSTM和Attention-LSTM-Kalman的3种模型的对比预测测量结果表明,注意力机制能有效提高模型精准度,引入卡尔曼滤波改善了模型的动态测量特性。该模型方案在风洞系统的流量测量验证了其可行性和有效性。 相似文献
11.
12.
针对软测量模型在实际应用中遇到的问题, 结合AdaBoost 集成学习思想, 提出适用于软测量回归的集成学习算法, 以提高传统软测量模型的精度. 为了克服模型更新技术对软测量实际应用的制约, 将增量学习机制加入软测量集成建模中, 使软测量模型具有在线实时更新的增量学习能力. 对浆纱过程使用新方法建立上浆率软测量模型, 并使用实际生产数据对模型进行检验, 检验结果表明, 该模型具有很好的预测精度, 并能够较好地实现在线更新.
相似文献13.
14.
神经网络具有很强的自组织、自适应和自学习的能力,具有大规模并行运算的能力;但权值和阈值的初始化是随机的,容易陷入局部极小,收敛速度慢;遗传算法具有良好的全局搜索性能,减少了限于局部最优解的风险,鲁棒性强,适用于并行处理,搜索不依赖于梯度信息,但不适合候选解的精调,标准遗传算法交叉率和变异率固定等缺陷;应用自适应竞争遗传神经网络醋酸乙烯聚合率软测量建模,采用保优竞争策略,使两者达到优势互补,取长补短的作用;仿真显示在有限代即可得到较优的结果,网络预测时间短,精度高,符合醋酸乙烯聚合率测量工程要求. 相似文献
15.
《计算机应用与软件》2016,(9)
极限学习机ELM(Extreme Learning Machine)具有训练过程极为快速的优点,但在实际分类应用中ELM分类器的分类精度和稳定性有时并不能满足要求。针对这一问题,在ELM用于分类时引入一种训练结果信息量评价指标来改进输出权值矩阵的求解方法,并增加隐层输出矩阵竞争机制来提高ELM的稳定性。为了进一步提高ELM的分类正确率,借鉴神经网络集成的理论,提出一种选择性集成ELM分类器。在集成方法中采用改进Bagging法并提出一种基于网络参数向量的相似度评价方法和选择性集成策略。最后通过UCI数据测试表明,同Bagging法和传统的全集成法相比,该方法拥有更为优秀的分类性能。 相似文献
16.
针对现有神经网络集成研究方法在输入属性、集成方式和集成形式上的不足,提出一种基于特征提取的选择性神经网络集成模型-NsNNEIPCABag.该模型通过Bagging算法产生若干训练子集;利用改进的主成分分析(IPCA)提取主成分作为输入来训练个体网络;采用IPCA从所有个体网络中选择出部分线性无关的个体网络;采用神经网络对选择出来的个体网络进行非线性集成.为检验该模型的有效性,将其用于时间序列预测,结果表明本文提出的方法的泛化能力优于流行的其它集成方法. 相似文献
17.
训练多个神经网络并将其结果进行合成,能显著地提高神经网络系统的泛化能力。本文提出了一种带偏置的选择性神经网络集成构造方法。对个体网络引入偏置项,增加可选网络的数量。选择部分网络集成,改善网络集成的性能。把个体网络的偏置项统一为集成偏置项,在训练出个体神经网络后,使用遗传算法选择部分网络集成,同时确定集成偏置项。理论分析和实验结果表明,该方法能够取得很好的网络集成效果。 相似文献
18.
半监督深度神经网络建模方法已被广泛应用于软测量,但基于分层训练的网络在特征提取过程局限于挖掘每层输入的有效信息,忽略了原始输入有效信息的丢失,逐层累积,从而导致原始输入的特征表示准确率低下;另外,缺乏挖掘过程时空相关性,也会导致模型性能退化。提出一种半监督动态深度融合神经网络(semisupervised dynamics deep fusion neural network,SS-DDFNN)方法。该方法在特征提取网络的每层都重构原始输入数据并预测质量变量,通过在预训练损失中使用重构原始输入误差,减小原始输入有效信息的丢失;同时融入注意力机制和t分布随机邻域嵌入提取时空相关信息,应用提取的特征建立门控神经网络质量预测模型。实验结果显示,相较于SAE、GSTAE和SIAE模型,所提方法在脱丁烷塔案例中的预测精度分别提升了2.8%、1.1%和0.9%;在工业聚乙烯生产案例中,分别提升了2.7%、1.0%和0.7%。实验结果验证了所提方法的有效性。 相似文献
19.
《计算机与应用化学》2016,(11)
隐变量模型如部分最小二乘已经被广泛用于建立低维子空间,并以此建立回归模型用于质量预测。然而,它们都是基于工业过程的静态假设,一般实际的工业过程都是动态的。本文提出一种非线性慢特征回归模型,用作动态软测量模型。首先,对线性慢特征分析进行非线性扩展,然后非线性的慢特征作为隐变量通过扩展后的慢特征分析从过程数据中被提取出来。不同于传统的隐变量模型,慢特征分析假设隐变量具有缓慢变化的动态特性。由于工业过程明显的动态变化,慢特性可以被看作有效的先验知识加以利用。最后,利用提取的慢特征建立回归模型并用于产品质量的预测。实验结果表明,基于非线性慢特征的软测量模型要比传统的软测量模型预测精度高。 相似文献
20.
针对目前静态软测量建模方法无法反映工业过程动态信息,造成模型预测精度低、鲁棒性差等问题,提出了一种基于模糊曲线和高斯过程的动态软测量建模方法.该方法采用模糊曲线法对输入数据进行处理,并利用处理后的数据构建新的数据集,最后采用高斯过程建立软测量模型.将提出的动态软测量模型应用于PTA氧化过程中4-CBA含量的预测,结果表明,所建模型运算速度快、预测精度高. 相似文献