首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 195 毫秒
1.
In order to solve the high-price and short-lifetime problems of the cutter of agricultural machinery,and improve the wear resistance of the cutter,the TiCN/Fe metal ceramic composite coating was prepared on the substrate of Q235 steel by reaction nitrogen arc cladding technique.The mixture powder of titanium and graphite was preplaced on the Q235 steel surface after inteasive mixing by planetary ball mill and gluing with starch binder.The microstructure and phase of the coatings,interface behavior between coatings and the substrate were investigated by scanning electronic microscope and X-ray diffractometer.The micro-hardness distribution of the coating section was tested by micro-hardness tester.Friction coefficient and wear weight loss were measured by abrasion machine.Wearing surface morphology was investigated by scanning electronic microscope.The results show that an excellent bonding between the coatings and the Q235 steel substrate is ensured by the strong metallurgical interface and phase of the coatings.The coatings are mainly composed of TiCN.The highest microhardness of the coatings reaches 1 089 HV0.2,while the micro-hardness of Q235 steel substrate is only about 286 HV0.2.The anti-abrasive test results show that the wear resistance of the cladding coating is better than that of quenched and tempered 65 Mn steel which is often used as cutter of agricultural machinery.The field test results show that the TiCN/ Fe metal ceramic composite coating prepared by reaction nitrogen arc cladding is feasible to the manufacture and remanufacture of the cutter of agricultural machinery.  相似文献   

2.
赵卫民  王勇  吴开源  薛锦 《中国焊接》2003,12(2):146-151
The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of HVOF in aqueous medium, comparing with those of coatings deposited by oxyacetylene flame spraying and flame cladding. The results show that the general corrosion rate of HVOF sprayed coatings is quite bigger than that of clad coatings, bat it is less sensitive to local corrosion. There is less and smaller porosity in the coatings deposited by HVOF than that in flame sprayed coatinlgs. The effects of porosity on the corrosion current density was indistinctive, bat the existence of large amount of defects in the coatings damaged the cohesion of the coatings, causing the metallic particles drop off from the coatings under the influence of corrosive medium. Improving the quality and reducing the porosity of coatings is the key to get the coatings with high corrosion resistance.  相似文献   

3.
In this study,Al–Zn and Al–Mg coatings were deposited on steel substrates by an arc thermal spray process.X-ray diffraction and scanning electron microscopy were used to characterize the deposited coatings and corrosion products.Open circuit potential(OCP),electrochemical impedance spectroscopy,and potentiodynamic studies were used to assess the corrosion characteristics of these coatings after exposure according to the Society of Automotive Engineers(SAE)J2334 solution of varying durations.This solution simulates an industrial environment and contains chloride and carbonate ions that induce corrosion of the deposited coatings.However,the Al–Mg alloy coating maintained an OCP of approximately-0.911 V versus Ag/Ag Cl in the SAE J2334 solution even after 792 h of exposure.This indicates that it protects the steel sacrificially,whereas the Al–Zn coating provides only barrier-type protection through the deposition of corrosion products.The Al–Mg coating acts as a self-healing coating and provides protection by forming Mg_6Al_2(OH)_(16)CO_3(Al–Mg layered double hydroxides).Mg_6Al_2(OH)_(16)CO_3has interlocking characteristics with a morphology of plate-like nanostructures and an ion-exchange ability that can improve the corrosion resistance properties of the coating.The presence of Zn in the corrosion products of the Al–Zn coating allows dissolution,but,at the same time,Zn_5(OH)_6(CO_3)_2and Zn_6Al_2(OH)_(16)CO_3are formed and act to reduce the corrosion rate.  相似文献   

4.
Microarc oxidation(MAO) coatings were prepared on the surface of aluminum alloys with different contents of magnesium. The morphologies and surface roughness of the coatings were characterized by Confocal laser scanning microscopy(CLSM). Phase and chemical composition of the MAO coatings were analyzed by X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The experimental results show that the coatings formed on different substrates have two-layer morphologies and are mainly composed of Al203 and Al-Si-O phases. In addition, the content of Al203 increases with increasing the content of magnesium. XPS results prove that magnesium from substrate indeed participates in the MAO process and is incorporated into the coating in the form of MgO. The coating formed on Al-3Mg substrate has the smallest mass loss and the lowest friction coefficient of 0.17--0.19.  相似文献   

5.
A novel Zn-Al co-cementation coating was obtained by a pack cementation method,This coating possesses a two-layered structure,The outer layer is mainly composed of Fe2Al3 and FeAl intermetallics with a small amount of Zn,and the inner layer consists of Zn,Fe and a small amount of Al.The corrosion-erosion resistance of Zn-Al con-cementation coatings on carbon steel was studied by a rotary corrosion method in various NaCl and H2S containing solutions and relevant SiO2 containing media,The experimental results are compared with those of carbon steels and the sherardizing and aluminizing coating ,showing that the Zn-Al co-cementation coating have excellent corrosion-erosion resistance in various aqueous media.  相似文献   

6.
Zr/WC composite coating was prepared on the surface of Cr12MoV steel by electric spark deposition technology to change its surface properties. The surface and worn surface morphology of the coating were observed using scanning electron microscope. Dry friction and wear tests of the coatings were carried out at room temperature. The results show that the coating is continuous and uniform, and the thickness was about 50-60 μm. The microhardness of the coating surface was highest at 1140 HV_(200g), which was significantly higher than that of the substrate. The ear tests results show that the wear weight loss, wear volume and wear rate follow the following rules: Cr12MoVWC coating Zr/WC composite coating.  相似文献   

7.
As-extruded Mg–Sr alloy, a kind of promising biodegradable biomedical material, was coated using micro-arc oxidation and also using a phosphate conversion coating. The corrosion behaviors were investigated using Hanks' solution. The corrosion of the as-extruded Mg–Sr alloy became more serious with increasing immersion time; that is, the corrosion pits became more numerous, larger and deeper. The micro-arc oxidation coating and the phosphate conversion coating were effective in improving the corrosion resistance of the as-extruded Mg–Sr alloy. The micro-arc oxidation coating was much more effective. Moreover, the as-extruded Mg–Sr alloy and the coated as-extruded Mg–Sr alloy exhibited lower corrosion rates than the as-cast Mg–Sr alloy and the corresponding coated as-cast Mg–Sr alloy, indicating that the corrosion properties of the coated samples are dependent on their substrates. The finer microstructure of the substrate of the as-extruded condition corroded much slower. The corrosion resistance of the coated Mg–Sr alloy depended on the coating itself and on the microstructure of the substrate.  相似文献   

8.
The Al2O3-TiB2 coatings were fabricated on Q235 steel by self-propagating high-temperature synthesis(SHS)process using aluminothermic reactions with aluminum,titania,boron oxide and ferric oxide powders.The effect of the content of excessive aluminum in the reactants on Al2O3-TiB2 coatings was studied when only Al-TiO2-B2O3 system was used for preparation of the coatings.The results indicate that the combustion reaction cannot occur when excessive aluminum is over 40wt%and the coating has good quality when excessive aluminum is 20wt%.In order to improve the bonding of the coating and substrate and optimize the ratio of Al2O3/TiB2,composite reaction systems Al-TiO2-B2O3 and Al-Fe2O3 were used for the preparation of Al2O3-TiB2 coatings.The XRD result shows that the coatings contain FeAl intermetallic compound which can improve efficiently the interface bonding of the coating and substrate.The percentage of Al-Fe2O3 system in reactants has only a small effect on the hardness of Al2O3-TiB2 coating,which is about 22000 MPa(Hv),but has an obvious effect on the morphology and interface bonding of the coatings.  相似文献   

9.
A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode. The traditional 321 stainless steel coating was also prepared for comparison. Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions. The structure and worn surface of the coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and energy dispersion spectroscopy(EDS). The results show that, except for aluminum phase addition in the 32 l/Al coating, no other phases are created compared with the 321 coating. However, due to the addition of aluminum, the 32 l/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior. Under the dry sliding condition, the anti-wear property of 32 l/Al coating is about 42% lower than that of 321 coating. But under the oil lubricated conditions with or without 32 h oil-dipping pretreatment, the anti-wear property of 321/AI coating is about 9% and 5% higher than that of 321 coating, respectively. The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.  相似文献   

10.
Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).  相似文献   

11.
Fe-Al/WC intermetallic composite coatings were prepared by high velocity arc spraying (HVAS) technology on 20G steel and the oxidation performance of Fe-Al/WC composite coatings was studied. The results demonstrate that the kinetics curve of oxidation approximately follows the logarithmic law and the oxidation velocity of Fe-Al/WC composite coatings is less than that of 20G steel after 5 h. The composition of oxidized coating is mainly composed of Al2O3, Fe2O3, Fe3O4 and FeO. These phases distribute unevenly. The protective Al2O3 film firstly forms and preserves the coatings from further oxidation.  相似文献   

12.
研究了利用喷丸加速制备涂层技术,对1Cr18Ni9Ti不锈钢分别进行600℃×4、6和8 h渗铝处理,研究了1Cr18Ni9Ti试样的单位面积增重、Al涂层厚度、主要元素沿涂层截面的分布;并将不同温度下获得的铝化物涂层与空白试样一起进行了高温氧化测试实验(900℃×100 h)。结果表明,在较低的温度600℃和较短的时间4 h,可以在1Cr18Ni9Ti钢基体上形成35μm厚的铝化物涂层;但抗氧化性能测试结果却表明,振动渗制处理6 h获得的铝化物涂层性能优于处理4 h和8 h的涂层。  相似文献   

13.
目的探索铝化物涂层的制备工艺,研究其是否能有效抑制铅液对CLAM钢的腐蚀。方法用配制的渗剂对CLAM钢进行包埋渗铝,并通过随后的热扩散和原位氧化处理,在CLAM钢表面制备铝化物涂层,研究不同渗铝时间和热扩散时间对涂层厚度的影响。通过静态氧化试验和铅液腐蚀试验,分别评价铝化物涂层的抗氧化性能及其与铅液的相容性,采用XRD、SEM和EPMA分析涂层的相组成以及铅液腐蚀前后的微观形貌和元素分布。结果包埋渗铝+热扩散+原位氧化处理制备的铝化物涂层主要由约30μm的FeAl相层和约70μm的α-Fe(Al)固溶体层组成。在热处理过程中,由于Al和Fe的互扩散现象,涂层中的Fe-Al相依次经过了Fe2Al5、FeAl2、FeAl、Fe3Al和α-Fe(Al)的转变。在600℃空气中静态氧化120 h后,铝化物涂层试样氧化质量增量为0.028 mg/cm2,比CLAM钢的氧化质量增量降低了1个数量级,铝化物涂层使CLAM钢的氧化动力学曲线由直线规律转变为抛物线规律。经550℃铅液腐蚀600、1800 h后,铝化物涂层的腐蚀质量增量分别为0.058、0.077 mg/cm2,仅约为CLAM钢的1/120。CLAM钢表面产生了疏松多孔的铁氧化物层,而铝化物涂层没有发生明显的腐蚀,但是腐蚀1800 h后,随着表面铝含量的不断消耗,Al2O3层厚度逐渐减小。结论铝化物涂层具有良好的抗氧化性能及与铅液的相容性,能够有效抑制铅液对CLAM钢的腐蚀。  相似文献   

14.
采用粉末预置法,在Q235钢表面激光熔覆Fe-Al复合涂层。采用SEM、XRD等方法分析了涂层的显微组织和物相结构,研究了不同激光工艺参数对涂层显微硬度和耐磨性的影响。结果表明,在优化工艺参数下,涂层与基体形成了良好的冶金结合,组织均匀细密,涂层中含有Al2O3硬质颗粒相及金属间化合物Fe3Al,其硬度和耐磨性得到提高。  相似文献   

15.
高速电弧喷涂Fe-Al涂层在800℃下的氧化性能   总被引:3,自引:1,他引:3  
采用高速电弧喷涂技术(HVAS)在20G钢基体上制备了Fe-Al金属间化合物涂层,测试了涂层在800℃下的氧化性能.结果表明,Fe-Al涂层的氧化动力学曲线近似呈现对数规律,其在5h后的氧化增重低于20G钢;涂层的氧化物为Al2O3、Fe2O3、Fe3O4和FeO等,且其分布不均匀;涂层表面优先形成具有保护性的Al2O3膜,阻止了涂层的进一步氧化。  相似文献   

16.
本文使用电弧喷涂通过包套挤压+拉拔的方法制备的Zn55Al伪合金丝材成功的在Q235钢上喷涂出了Zn55Al涂层。通过扫描电镜和微区XRD研究了Zn55Al 伪合金丝材的显微结构。通过浸泡腐蚀实验和电化学方法研究了Zn55Al涂层、Zn15Al涂层和 Al涂层的腐蚀行为,并对比了三种涂层之间的差异。结果表明Zn55Al伪合金丝材由纯锌和纯铝组成,在整个成型过程中没有产生合金化。Zn55Al涂层由层片状的富锌相和富铝相组成。经过20天的浸泡实验,Zn55Al涂层形成了一层致密的钝化膜,比其他两种涂层有更好的耐腐蚀性。Zn55Al涂层的自腐蚀电位大约是-1.25v,高于Zn15Al涂层低于纯Al涂层和Q235基体.电偶腐蚀实验表明,Zn55Al涂层比Zn15Al涂层具有更好的点虎穴保护作用。这些结果说明Zn55Al涂层具有更好的耐腐蚀性和可以给Q235基体提供更强的电化学保护.本文也讨论了Zn55Al涂层的的腐蚀机理。  相似文献   

17.
目的提高AH32海洋用钢表面的疏水性及耐蚀性,并给出最佳性能的喷涂涂层成分。方法采用大气等离子喷涂技术,在AH32钢表面制备了三种不同成分的涂层。利用微量进样器结合半球法测量了涂层的接触角,并利用Qwen-Wendt公式对涂层的表面能进行了计算,利用扫描电子显微镜观察涂层的表面形貌,利用表面粗糙度仪测量涂层的表面粗糙度,利用冲刷实验及电化学工作站测量了不同涂层的耐蚀性能,并讨论了不同涂层的疏水机制及相应的腐蚀机理。结果等离子喷涂涂层显著改善了AH32钢的疏水性能。相比而言,等离子喷涂Co基涂层及等离子喷涂Ni基涂层与水的静态接触角达到了130°以上,均具有较好的疏水效果。三种涂层均明显改善了AH32钢的耐海水冲刷腐蚀能力,其中AH32钢基体腐蚀30d后的失重为1.68×10^-2 g/cm^2,等离子喷涂Ni基涂层的腐蚀失重最小,约为4.2×10^-3 g/cm^2。极化曲线测试结果也表明,三种涂层的自腐蚀电位较基体提高了300 mV左右,并且腐蚀电流密度较基体降低了1个数量级以上,另外Co基涂层的腐蚀电流密度高于Ni基涂层的腐蚀电流密度,因此Co基涂层在腐蚀过程中表面会产生较多的羟基基团,导致其与水的静态接触角降低,最终导致其疏水性能下降。结论等离子喷涂Ni基涂层的疏水性能最好,腐蚀速率最小,耐冲刷腐蚀性能最佳,与基体相比,其腐蚀失重减小了1.26×10^-2 g/cm^2。  相似文献   

18.
用等离子喷涂技术制备了用作粘结底层的Al/Ni、Fe-Al涂层,研究对比了这两种涂层在锌液中的耐腐蚀性能。结果表明,Fe-Al比Al/Ni有更好的耐锌蚀性。  相似文献   

19.
高速电弧喷涂Fe-Al/WC复合涂层在650℃下的氧化行为   总被引:4,自引:1,他引:4  
采用高速电弧喷涂技术在20G钢基体上制备了Fe-Al/WC金属间化合物复合涂层,利用热重天平测试了涂层在650℃下的氧化性能。结果表明:Fe-Al/WC复合涂层的氧化动力学曲线近似呈现出对数规律;涂层的氧化物以Al2O3、Fe2O3、Fe3O4和FeO等为主,且其分布不均匀;涂层表面优先形成具有保护性的Al2O3膜,阻止了涂层的进一步氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号