首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu–Al/Al nanostructured metallic multilayers with Al layer thickness hAlvarying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAldown to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu–Al monolithic thin films. The strain rate sensitivity(SRS, m),however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu–Al nanolayers dominated at hAlB 20 nm, while the crystalline Al nanolayers dominated at hAl[ 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAl-dependent hardness and SRS were quantitatively modeled in light of the strengthening mechanisms at different length scales.  相似文献   

2.
为提高高熵合金薄膜 NbMoWTa 的耐磨减摩性能,采用磁控溅射技术在 Si 基体上制备具有不同调制波长的 NbMoWTa / Ag 纳米多层膜,利用 XRD、SEM 和 TEM 等对纳米多层膜进行表征,分析其硬度和摩擦学性能。 结果表明不同调制周期结构的纳米多层膜结晶性良好。 多层膜硬度随着单层膜厚度 (100~ 5 nm)的降低而增加(5. 62 ~ 8. 39 GPa),在单层膜厚度减小到 20 nm 时,其塑性变形机制由位错在界面处的堆积机制转变为位错穿越界面运动机制;在尺寸小于 10 nm 时,多层膜的硬度接近于高熵合金 NbMoWTa 单质膜 (10. 93 GPa),这可能由随着单层厚度的降低引起 NbMoWTa 膜与 Ag 膜之间界面由半共格向共格转变所引起。 同时,通过摩擦磨损试验获得纯 NbMoWTa 薄膜的摩擦因数为 0. 49,磨损率为 1. 75×10-5 mm3N-1m-1 ;单层膜厚度为 5 nm 的多层膜的摩擦因数为 0. 23,磨损率为 2. 19×10-5 mm3N-1m-1 。 在 NbMoWTa 中添加 50%的 Ag 制备而成的纳米多层膜有共格强化效应,保证了其高硬度高强度的同时,由多层设计实现了耐磨和自润滑的协同控制。  相似文献   

3.
This paper presents a concept of combining hard CrN (or CrSiN) and soft Ag lubricating materials in a nanoscale multilayer structure. The CrN/Ag and CrSiN/Ag multilayers are synthesized by reactive direct current (DC) magnetron sputtering techniques. The thickness of the Ag nanolayer in the multilayers is fixed to 4 nm while that of CrN and CrSiN nanolayers vary from 4 to 20 nm. The nitride layer effects on the mechanical and tribological properties of the multilayers have been investigated. Different mechanisms of the adhesion failure have been observed on the multilayer surfaces, depending on the nitride nanolayer types and their thicknesses. The CrSiN/Ag films exhibit poor adhesion whereas CrN/Ag multilayers demonstrate very good adhesion to AISI M2 steel substrates. The study of friction behaviors of the CrN/Ag multilayers against 100Cr6 steel balls reveals that the multilayers have low friction coefficients in comparison with that of a CrN single layer. The decrease of friction coefficients is related to the presence of the solid lubricant (Ag) nanolayer in the coatings.  相似文献   

4.
[FePt/Ag]n multilayers were deposited on glass substrates by RF magnetron sputtering and ex situ annealed at 550℃ for 30 min. The effects of inserted Ag layer thickness and the number of bilayer repetitions (n) on the structure and magnetic properties of the multilayers were investigated. It was found that the difference between in-plane and out-of-plane coercivities varied with an increase of inserted Ag layer thickness in the [FePt 2 nm/Ag x nm]10 multilayers. The ratio of out-of-plane coercivity to in-plane coercivity reached the maximum value with the Ag layer thickness of 5 nm, indicating that the Ag layer thickness plays an important role in obtaining perpendicular orientation. For the [FePt 2 nm/Ag 5 um]n multilayers, perpendicular orientation is also influenced by n. The maximum value of the ratio of out-of-plane coercivity to in-plane coercivity appeared when n was given as 8. It was found that the [FePt 2 nm/Ag 5 nm]8 had a high perpendicular coercivity of 520 kA/m and a low in-plane one of 88 kA/m, which shows a strong perpendicular anisotropy.  相似文献   

5.
张欣  张金钰  刘刚  张国君  孙军 《金属学报》2011,47(2):246-250
通过单轴拉伸实验并结合原位电阻测量法系统研究了恒定调制比下调制波长(λ=10-250 nm)对聚酰亚胺基体上Cu/Nb纳米金属多层膜延性和断裂韧性的影响.微观分析表明,Cu/Nb的调制结构清晰,不存在明显的互混现象.实验结果表明,随着调制波长的减小,多层膜的延性和断裂韧性均呈现非单调演变趋势,在调制波长为50 nm左右...  相似文献   

6.
利用纳米压痕实验以及四探针法,系统研究了相同层厚Cu/X(X=Cr,Nb)纳米金属多层膜的力学性能(强/硬度)和电学性能(电阻率)的尺度依赖性.微观分析表明:Cu/X多层膜调制结构清晰,Cu层沿{111}面择优生长,X层沿{110}面择优生长.纳米压入结果表明,Cu/X多层膜的强度依赖于调制周期,并随调制周期的减小而增加.多层膜变形机制在临界调制周期(λ~c≈25 nm)由Cu层内单根位错滑移转变为位错切割界面.多层膜的电阻率不仅与表面/界面以及晶界散射相关,而且在小尺度下受界面条件显著影响.通过修正的FS-MS模型可以量化界面效应对多层膜电阻率的影响.Cu/X纳米多层膜可以通过调控微观结构实现强度-电导率的合理匹配.  相似文献   

7.
《Acta Materialia》2000,48(12):3261-3269
Free standing polycrystalline thin films with a strong 〈111〉 texture were tested in uniaxial tension. Studied were electron-beam deposited Ag, Cu and Al films, and Ag/Cu multilayers consisting of alternating Ag and Cu layers of equal thickness, between 1.5 nm and 1.5 μm (bilayer repeat length, λ, between 3 nm and 3 μm). The films had a total thickness of about 3 μm. A thin polymeric two-dimensional diffraction grid was deposited on the film surface by microlithographic techniques. Strains were measured in situ from the relative displacements of two laser spots diffracted from the grid. The average values of the Young’s moduli, determined from hundreds of measurements, are 63 GPa for Ag, 102 GPa for Cu, 57 GPa for Al and 87.5 GPa for Ag/Cu multilayers. In all cases, these values are about 20% lower than those calculated from the literature data and, for the Ag/Cu multilayers, are independent of λ. No “supermodulus” effect was observed. The 20% reduction in modulus is most likely the result of incomplete cohesion (“microcracking”) of the grain boundaries. The ductility of the Ag/Cu multilayers decreases when λ is reduced. For λ<80 nm, the films are brittle at room temperature: they break without macroscopic plastic flow. For λ>80 nm, the yield stress increases with decreasing λ according to a Hall–Petch-type relation. No softening with decreasing grain size was observed even at the lowest values of λ.  相似文献   

8.
《Acta Materialia》2005,53(18):4817-4824
Nano-indentation hardness as a function of bilayer period has been measured for sputter-deposited Cu–Nb multilayers. For this face-centered cubic/body-centered cubic system with incoherent interfaces, we develop dislocation models for the multilayer flow strength as a function of length scale from greater than a micrometer to less than a nanometer. A dislocation pile-up-based Hall–Petch model is found applicable at the sub-micrometer length scales and the Hall–Petch slope is used to estimate the peak strength of the multilayers. At the few to a few tens of nanometers length scales, confined layer slip of single dislocations is treated as the operative mechanism. The effects of dislocation core spreading along the interface, interface stress and interface dislocation arrays on the confined layer slip stress are incorporated in the model to correctly predict the strength increase with decreasing layer thickness. At layer thicknesses of a few nanometers or less, the strength reaches a peak. We postulate that this peak strength is set by the interface resistance to single dislocation transmission, and calculate the transition from confined layer slip to an interface cutting mechanism.  相似文献   

9.
Ta / NiFe/Bi ( Ag, Cu )/FeMn/Ta and Ta / NiFe1/FeMn / Bi ( Ag, Cu )/NiFen/Ta films were prepared by magnetic sputtering. The texture and the dependences of the exchange-coupling field on the thickness of Bi, Ag, and Cu in Ta/NiFe/Bi(Ag, Cu) /FeMn/Ta and Ta/NiFe/FeMn/Bi(Ag, Cu)/NiFe/Ta films were studied. XPS results indicate that the Bi atoms migrated into the FeMn layer during the deposition process and a FeMnBi alloy was probably formed or the Bi atoms existed as an impurity in the FeMn layer in Ta/NiFe/Bi(Ag, Cu )/FeMn/Ta. Otherwise, in Ta/NiFe/FeMn/Bi (Ag, Cu)/NiFe/Ta films, Bi, Ag, and Cu atoms do not remain entirely at the interface of the FeMn/ NiFeⅡfilm, but at least partly segregate to the surface of the NiFe film.  相似文献   

10.
采用Nb/Cu/Ni作中间层,在连接温度为1403K、连接时间为50min、连接压力为7.5MPa的条件下,采用不同尺寸的中间层进行了Si3N4陶瓷与Inconel 600高温合金的部分液相扩散连接。通过改变Nb层、Cu层厚度,研究了Cu层、Nb层厚度变化对Si3N4/Nb/Cu/Ni/Inconel 600接头的组织和性能的影响。研究发现,当Cu层厚度小于0.05mm时,随着Cu层厚度的增加,接头中的Cu—Ni合金层厚度增加,接头强度快速增加;当Cu层厚度超过0.05mm时,接头中的Cu—Ni合金层厚度由于压力的作用不明显增加,接头强度增加缓慢。随着Nb层厚度的增加,反应层厚度增加,接头的强度先增大后减小。  相似文献   

11.
重复压缩—轧制法制备纳米级金属多层材料   总被引:2,自引:0,他引:2  
通过将层厚为数十微米的金属多层材料重复地进行压缩和轧制处理制备了纳米级金属多层材料,扫描电镜和透射电镜观察提示了最终达到纳米级层厚的有规律的层厚减薄过程,磁电阻的测定结果也证实了纳米多层材料的形成。试样的拉伸强度高达1500MPa以上,延伸率为0.8%左右。  相似文献   

12.
Thermal stabilities of Cu/Nb, Cu/Ag, and Cu/Mo multilayers are studied by a recently developed model for microstructure evolution in multilayers with immiscible constituents, which actually is an extension to the classic grooving theory. The experimentally evidenced zig–zag microstructure is found to form through grooving when grains are staggered in a “stair-like” fashion. Furthermore, stability maps for these systems are developed in terms of the aspect ratio of grain dimensions and the ratio of the distance between two nearest triple junctions to the in-plane grain size. A comparison of stability among the three systems shows that the ratio of the grain boundary energy to the interphase boundary energy is more important than the ratio of the two grain boundary energies in controlling the stability. A simple criterion is also proposed for a quick estimation of the stability. Both maps from the model and from the simple criterion are in good agreement with the experiments for multilayers.  相似文献   

13.
对于NiFe/Cu/NiFe/FeMn自旋阀多层膜,Cu原子偏聚到NiFe/FeMn界面将导致自旋阀多层膜中NiFe/FeMn的交换耦合Hex下降,然而,少量的表面活化原子Bi被沉积到Cu层和被钉扎NiFe层之间。Cu原子在NiFe/FeMn界面的偏聚可以被抑制。而且,更重要的是Ta/NiFe/Cu/NiFe/FeMn/Ta自旋阀多层膜中的交换耦合场Hex可以被有效地提高。  相似文献   

14.
Cu/Ni多层膜对Ti811合金微动磨损和微动疲劳抗力的影响   总被引:1,自引:0,他引:1  
在Ti811钛合金表面利用离子辅助磁控溅射沉积技术制备20~1200nm不同调制周期的Cu/Ni金属多层膜,分析多层膜的结构,测试膜基结合强度、膜层显微硬度和韧性,对比研究不同调制周期的Cu/Ni多层膜对钛合金基材常温下微动磨损性能和微动疲劳(FF)抗力的影响。结果表明:利用离子辅助磁控溅射技术可以获得致密度高、晶粒细化、膜基结合强度高的Cu/Ni多层膜,该类多层膜具有良好的减摩润滑作用,因而改善了Ti811钛合金常温下抗微动磨损和微动疲劳性能;Cu/Ni多层膜对钛合金FF抗力的改善程度随膜层调制周期呈现非单调变化趋势,调制周期为200nm的Cu/Ni多层膜对钛合金FF抗力的提高程度最大,原因归于该膜层具有良好的强韧和润滑综合性能。  相似文献   

15.
Y.P. Li  G.P. Zhang 《Acta Materialia》2010,58(11):3877-3887
Plastic deformation and fracture behavior of two different types of Cu/X (X = Au, Cr) multilayers subjected to tensile stress were investigated via three-point bending experiments. It was found that the plastic deformation ability and fracture mode depended on layer thickness and interface/boundary. The Cu/Au multilayer showed significant features of plastic flow before fracture, and such plasticity was gradually suppressed by premature unstable shearing across the layer interface with decreasing layer thickness. In comparison, Cu/Cr multilayers were prone to a quasi-brittle normal fracture with decreasing layer thickness. Both experimental observations and theoretical analyses revealed differences in plasticity and fracture mode between the two types of metallic multilayers and the relevant physical mechanism transition due to length scale constraint and interface/boundary blocking of dislocation motion.  相似文献   

16.
The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after theas-deposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350 ℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.  相似文献   

17.
用双对向靶溅射方法制备了具有非晶磁性的「Co/Ti」30,「Co/Cu(Ni)30」两组多层膜,分别用X射线衍射,透射电镜和振动样品磁强计做了结构和磁性测量,在以非晶Co和Ciu-Ni合金构成的「Co/Cu(Ni)」多层膜中,发现饱和磁化强度Ms随非磁性层厚度ds的增国发生振荡变化;在以非晶Co和Ti构成的「Co/Ti」多层膜中,MS和则随ds的增加而减小。  相似文献   

18.
用直流电沉积双槽法在纯铜基体上制备了不同调制波长的Cu/Ag多层膜,研究了多层膜硬度与调制波长之间的关系.实验结果表明,当调制波长位于600~300nm时,Cu/Ag多层膜的硬度与调制波长之间较好地符合基于位错塞积模型的Hall-Petch关系;当调制波长小于300 nm时,硬度与调制波长的关系偏离了HaU-Petch关系.由实验结果分析得出了Cu/Ag多层膜的位错稳定存在极限晶粒尺寸约为25 nm,与基于程开甲等人的位错稳定性理论得出的Ag晶体极限晶粒尺寸27 nm接近,验证了程开甲等人的位错稳定性理论.  相似文献   

19.
The mechanical behavior of incoherent Cu/Zr multilayers was studied in uniaxial compression experiments using micropillars with individual layer thicknesses (h) ranging from 5 to 100 nm. The deformation behavior of these micropillars are size dependent, transiting from dislocation dominated symmetrical slip at large h to shear localization induced by asymmetric slip and grain boundary mediated deformation at small h. During compression studies the multilayer micropillars exhibit a transition from strain hardening to shear softening at small h, and work softening at greater h. A maximum strain hardening rate is observed at a critical h of 20 nm, which was explained in terms of a transition from dislocation interactions to cross-slip of dislocations. The mechanical strength of the micropillars is also dependent on h, which was quantitatively analyzed using the confined layer slip model. In addition, the influence of pillar diameter on the mechanical behavior is also investigated. The effect of extrinsic size on the deformation mechanisms is discussed with respect to the intrinsic size effect with variation in h.  相似文献   

20.
Nanostructured CrSiN/TiAlN multilayer coatings were deposited by a bipolar asymmetric reactive pulsed DC magnetron sputtering system. The thickness ratio of CrSiN to TiAlN layers was fixed at 1:1. The bilayer periods of the coatings were controlled to be from 6 to 40 nm. Furthermore, two CrSiN/TiAlN multilayer coatings with the same bilayer period (20 nm) but different CrSiN/TiAlN thickness ratios (2:8 and 8:2) were also deposited to explore the influence of thickness ratio on the mechanical properties of the multilayer coatings. The crystalline structures of the coatings were determined by a glancing angle X-ray diffractometer. The microstructures of thin films were examined by a scanning electron microscopy and a transmission electron microscopy, respectively. A nanoindenter, a micro Vickers hardness tester, and a pin-on-disk wear tester were used to evaluate the hardness, the toughness and the tribological properties of the thin films, respectively. The maximum hardness of the multilayers was obtained when the bilayer period was at 10 nm for the coating with the same thickness ratio of CrSiN to TiAlN layers (1:1). Meanwhile, the thickness ratio of CrSiN to TiAlN layer had great influence on the hardness and the toughness properties of the multilayer coatings. The hardness and the toughness of the CrSiN/TiAlN multilayer coatings increased as the individual TiAlN layer thickness increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号