首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用轧制方法制备Cu/Mo/Cu复合材料,利用金相显微镜、扫描电镜和电子拉伸机等研究Cu/Mo/Cu复合材料的界面结构、断裂特点和工艺参数对结合强度的影响。结果表明:轧制前经(750℃,8 min)热处理,道次变形量为55%,复合材料的界面结合紧密,最大剪切强度为77 MPa;钼层金属显微组织呈扁平纤维状,组织较为均匀,铜层金属的晶粒呈等轴状,由界面至表面晶粒逐渐增大,且分布很不均匀;复合机制为典型的裂口结合和机械啮合。  相似文献   

2.
采用热轧+温轧方法制备Cu/Mo/Cu复合板,研究轧制工艺对复合板结合界面及组元厚度配比的影响。结果表明:经过轧制变形后,铜钼界面实现紧密结合且结合机制为齿状啮合,铜层外表面和靠近界面层的晶粒比中部细小;随着变形量的增加,铜层等轴状晶粒沿轧制方向被拉伸,界面结合效果明显改善,且由齿状变得较为平直。分析组元厚度配比,铜层变形量较钼层的大,随着总压下量的增加,组元压下率的差值减小,变形量逐渐趋于一致;首次提出了Cu/Mo/Cu三层复合板厚度配比的关系,为实际选择原料提供依据  相似文献   

3.
在加压条件下采用固-液复合法制备了Cu/Al复合材料,并对复合材料界面层的硬度、抗拉强度及微观组织进行了研究。结果表明,在加压条件下固-液复合法可以制备出抗拉强度达38.24 MPa且Cu/Al复合界面结合良好的复合材料;界面层硬度显著高于两侧基体硬度;界面层靠近铜侧区域容易出现断裂现象,生成的脆性相CuAl2是造成复合材料断裂的主要原因之一。  相似文献   

4.
用Cu_2O粉作氧化剂,采用简化的内氧化工艺,在900℃下使Cu-Al合金薄平板内氧化,获得Al_2O_3/Cu复合材料。然后采用热挤压法制取了Al_2O_3/Cu复合材料,对其显微组织和拉伸断口及界面进行观察与分析。结果表明:增强颗粒在基体中分布均匀,细化了晶粒,压制后组织进一步致密细化,且该材料具有良好的热稳定性;拉伸断口有韧窝断裂;能谱分析表明,板表面之间存在元素的扩散,热力学分析表明界面上有化学结合,界面结合状态较好。且复合层中Al_2O_3颗粒呈弥散状分布;复合层表面和内部的晶粒大小明显不同,表面晶粒较小。  相似文献   

5.
采用专利挤压铸造方法制备了3种Mo体积分数分别为55%、60%和67%的Mo/Cu复合材料,并对其微观组织和导热性能进行了研究.结果表明:Mo颗粒分布均匀,Mo/Cu界面干净,不存在任何界面反应物和非晶层;复合材料组织均匀、致密,且致密度高达99%以上;复合材料的热导率为220~270 W/(m·K),并随着Mo含量的增加而降低.混合定律(ROM)较好地预测了55%Mo/Cu复合材料的热导率,而采用Maxwell模型和H-M模型的计算值与60%和67%Mo/Cu复合材料的热导率测试值一致.  相似文献   

6.
采用等辊径、等辊速冷轧复合技术制备了AgNi10/Cu/Fe三层复合材料,对其界面结合机制进行了研究。复合前对三层材料分别进行再结晶退火,获得均匀的原始组织及相近的硬度,并用钢丝刷清理复合面。利用扫描电镜和能谱仪对复合材料的剥离面进行了形貌观察和成分分析。结果发现,AgNi10/Cu/Fe的界面结合机制主要是裂口机制。各层复合面的硬化层在轧制时开裂,其中较软金属(AgNi10和Cu)从裂口中挤出,与硬金属(Cu和Fe)产生结合;其结合强度分别大于AgNi10和Cu的基体强度。  相似文献   

7.
利用爆炸复合的方法成功制备了Monel合金/Cu双金属复合棒材.借助金相显微镜(OM)、扫描电子显微镜(SEM)、能谱分析(EDS)和压剪分离测试,探讨了不同工艺条件下Monel/Cu爆炸复合界面的微观组织和力学性能.结果表明,随着爆炸比的增加,结合界面逐渐由平直状过渡到波状;在铜基体晶粒内的形变孪晶数量随爆炸比的增加而增加;界面局部存在少量熔区,熔区内存在细小的柱状晶;复合界面中没有发生扩散,但经过热处理后其界面观察到了扩散.剪切断裂发生在铜侧而非界面处,表明界面结合强度高于铜基体.  相似文献   

8.
研究了Cu/Al/Cu层状金属复合材料的电子束焊,对焊接接头的表面成形、微观组织、力学性能进行分析。结果表明,采用电子束焊可以实现Cu/Al/Cu层状金属复合材料的有效连接。不同金属层焊缝宽度明显不同,铝层焊缝宽度最大,且铝层金属大量进入顶部和底部的铜层焊缝中。各层母材和焊缝界面均出现了IMCs层,铝层主要是Al2Cu,铜层则主要是AlCu,Al2Cu。在焊缝中心生成大量的块状Al2Cu,均匀分布在α-Al和Al2Cu组成的共晶组织基体中。接头抗拉强度为44 MPa,断口呈现明显的脆性断裂特征,拉伸断裂位置于显微硬度最高的焊缝中心区。创新点: (1)采用Cu/Al/Cu层状金属复合材料代替纯铜在工业领域的应用。(2)采用电子束焊接技术实现Cu/Al/Cu三明治结构层状金属复合材料的焊接。  相似文献   

9.
应用固态扩散焊方法制备出钼/铜(Mo/Cu)复合棒接头,利用金相显微镜、扫描电镜和显微硬度计、拉伸压剪分离等试验手段分析了复合界面的组织特征及力学性能。结果表明:在Mo/Cu物理界面两端形成了数十微米宽的扩散层,扩散层的显微硬度值高于铜棒的硬度值而小于钼棒硬度值;结合界面的抗拉强度相当于Cu基体强度的40%;结合界面的剪切强度与Cu基体剪切强度相当,可以满足以剪切强度为承载方式的性能要求。  相似文献   

10.
Mo2C+Mo涂层对C/Cu复合材料界面及浸渗的影响   总被引:1,自引:1,他引:0  
分析了C/Cu复合材料的界面润湿特性及多种润湿涂层的性质. 选择Mo2C+Mo作为C/Cu复合材料的润湿涂层, 研究了该涂层对真空液相浸渗C/Cu复合材料界面润湿特性的影响. 结果表明, 传统金属Cu涂层在浸渗温度下失效, 而Mo2C+Mo涂层在液相浸渗温度下较稳定, 能显著提高C/Cu界面润湿性, 有效改善界面结合, 并促进液相浸渗复合过程的进行.  相似文献   

11.
Cu/Mo/Cu爆炸复合界面组织特征   总被引:7,自引:0,他引:7  
用爆炸复合的方法,试制出了Cu/Mo/Cu板材。用光学显微镜和扫描电镜研究了其界面组织特征;并利用显微硬度考察了界面附近硬度及界面附近的形变特点。结果表明:Cu/Mo/Cu复合材具有波形结合面和平直结合面;波形界面存在熔区,其熔区的显微硬度高于Cu基体而低于Mo基体。  相似文献   

12.
铜/铝/铜轧制复合板的退火工艺研究   总被引:6,自引:1,他引:5  
研究了低温长时间和高温短时两种退火工艺对铜/铝/铜轧制复合板的成型性能及界面结合强度的影响,讨论了退火强化现象没有出现的原因。结果表明,退火处理不能提高铜/铝/铜轧制复合板的结合强度,只能改善复合板的成型性能。铜/铝轧制复合板宜采用高温短时退火制度,退火温度选择580~625℃,时间控制在10min以内,此工艺得到的铜/铝轧制复合板综合性能最佳。  相似文献   

13.
电子封装用Cu/Mo/Cu复合材料的工艺研究   总被引:1,自引:0,他引:1  
研究了浸涂助复剂(铝基合金)和室温轧制工艺对Cu/Mo/Cu复合界面结合强度的影响,简述了Cu/Mo/Cu复合板室温轧制成形工艺过程,详细分析了表面和界面清理、初道次轧制临界变形率及热处理工艺等因素对复合板结合强度的影响。实验结果得出,钼板浸涂Al—Mn—Zn—Sn合金助复剂后的热处理温度为800~850℃;初道次轧制变形率为45%最佳;复合轧制后合适的退火工艺为450℃,保温60min。  相似文献   

14.
为减少传统工艺制备的钨/铜薄板在压力加工过程中产生过多缺陷,提高板材的力学和电学性能,设计了一种新型的具有Cu/WCu/Cu三明治结构的超薄板,对比分析了两种结构板材在轧制过程中组织和性能的变化。结果表明:与传统结构试样相比,三明治结构试样表面覆铜层能够完成对基体表层钨颗粒的包覆和孔隙的填充,进而实现表面改性;三明治结构试样在轧制过程中产生缺陷相对较少,加工硬化不明显,抗拉强度和导电性能也优于传统试样。  相似文献   

15.
Cu/Ni固相扩散界面的研究   总被引:3,自引:0,他引:3  
采用彩色金相技术对“嵌入式”Cu/Ni扩散偶真空扩散处理时的界面迁移现象进行了观测,并研究了Cu/Ni界面间的扩散行为。结果表明,扩散偶在退火温度1123~1223K、保温时间25~150h(0·9×105~5·4×105s)的工艺条件下反应,Cu/Ni界面间结构由α/β转变为α/α′/β,其中α′为扩散层,实质是成分不均匀的固溶体,Cu/Ni界面间扩散行为是Kirkendall效应的一种显现,即界面上Cu和Ni元素均发生了扩散,但主要是Cu原子向Ni层的扩散。最后在试验数据基础上发现,扩散层厚度L与退火时间t之间满足抛物线L=K(t/t)n关系。  相似文献   

16.
退火温度对轧制复合Cu/Mo/Cu电子封装材料性能的影响   总被引:4,自引:0,他引:4  
研究了不同退火温度对轧制复合Cu/Mo/Cu电子封装材料性能的影响。结果表明退火温度对复合材科日刁剪切强度、轧向导电能力和厚度方向导热能力有显著影响,退火温度为850℃时,Cu/Mo/Cu电子封装材料的综合性能最好。  相似文献   

17.
采用化学共沉淀法制备了Cr/Cu复合粉体催化剂,并用化学气象沉淀法(CVD)原位合成CNTs/Cu复合粉末。利用SEM, TEM和Raman光谱分别对其微观形貌和结构进行表征。结果表明:采用化学气相沉淀法,使用10 wt%Cr/Cu 的催化剂,在混合气体(Ar/H2/C2H4) 流量2450/300 mL/min下,于1073 K 温度生长30 min,可以得到优质、结晶良好的 CNTs/Cu 复合粉末  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号