首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对热轧淬火态的7%Mn低碳中锰钢进行不同温度的回火处理,研究了回火处理后试验钢逆转变奥氏体与碳化物的演变对其性能的影响。结果表明:随回火温度的升高,试验钢中逆转变奥氏体比例与晶粒尺寸增加,Mn由回火马氏体向逆转变奥氏体中的迁移速率加快,使得Mn元素在逆转变奥氏体中有不同程度的富集。随回火温度的升高,试验钢屈服强度与屈强比下降,抗拉强度逐渐升高,这主要是由于高温回火后未能形成M3C析出强化相,同时基体中位错回复程度增大造成明显软化,以及逆转变奥氏体的含量升高导致相变诱导塑性(TRIP)效应加剧所致。随回火温度的升高,试验钢-60℃稳态裂纹扩展功大幅降低,裂纹由稳态扩展为主逐渐转变为失稳扩展为主,这主要是因为试验钢在高温回火后,逆转变奥氏体中Mn的富集程度下降带来Ms温度显著升高,导致其在-60℃下部分发生转变,形成淬火马氏体造成了韧性下降。  相似文献   

2.
比较了含1.90%Ni和4.92%Ni中碳Cr-Ni-Mo系超高强度钢不同淬火温度低温回火后的力学性能,分析了淬火温度、残余奥氏体量对力学性能的影响。结果表明,900℃淬火200℃回火后试验钢的抗拉强度、伸长率和-40℃冲击吸收功分别大于2200MPa、10%和10J。随着淬火温度的提高,抗拉强度、断后伸长率和断面收缩率先缓慢提高到最大值后开始缓慢下降。4.92%Ni试验钢中大量残余奥氏体导致其屈服强度和屈强比降低、应变硬化指数增大,在拉伸过程中残余奥氏体应变诱导马氏体相变和相变诱发塑性(TRIP),伸长率、静力韧度和塑性变形能均有明显提高。  相似文献   

3.
对自制的高强海洋平台用合金钢850℃油淬后进行200~650℃×2 h回火处理,研究了回火温度对试验钢显微组织和力学性能的影响。结果表明:随回火温度的升高,试验钢的淬火组织逐渐转变为回火马氏体、回火屈氏体和回火索氏体;强度和硬度逐渐下降,但与抗拉强度相比,上屈服强度下降得更慢些,塑性总体呈现升高趋势。600℃回火试样拉伸过程中出现屈服平台,继续提高回火温度,屈服现象更明显。冲击性能随回火温度的升高先下降后上升,在300~500℃范围内出现明显的回火脆性。当回火温度为600℃时强韧性匹配最好,抗拉强度840 MPa,上屈服强度760 MPa,断后伸长率17%,-40℃冲击吸收能量175 J。  相似文献   

4.
冉华安 《热加工工艺》2014,(10):214-216
对含微量钼/钒耐火钢进行了不同工艺的回火处理,并进行了拉伸和0℃冲击试验与分析。结果表明,适当的回火处理可以提高含微量钼/钒耐火钢的室温抗拉强度、高温抗拉强度、室温屈服强度、高温屈服强度和零度冲击韧度。回火时间对其室温/高温抗拉强度、室温/高温屈服强度无明显影响,对0℃冲击韧度有影响;室温/高温抗拉强度、室温/高温屈服强度和0℃冲击韧度都随回火温度的升高而呈现出先增加后减小的趋势。该耐火钢的回火工艺优选为(550±5)℃×60 min油冷。  相似文献   

5.
采用不同的预先热处理、淬火和回火工艺,对含铟超高强度工程结构用钢进行了热处理。并分析了显微组织,测试了拉伸性能和冲击性能。结果表明,与常规退火相比,等温退火使室温抗拉强度增加30%,屈服强度增加33%,断后伸长率增加140%,冲击韧性增加51%。随淬火温度或回火温度的提高,其室温抗拉强度、屈服强度、断后伸长率和冲击韧性均先提高后降低。预先热处理工艺优选为等温退火工艺,淬火温度优选为840℃,回火温度优选为180℃。  相似文献   

6.
研究了1050 ℃正火+550~700 ℃回火处理对00Cr13Ni5Mo超级马氏体不锈钢中厚板显微组织和力学性能的影响。结果表明,在1050 ℃正火后,随着回火温度的升高,板条状马氏体逐步分解,产生了逆变奥氏体组织,600 ℃回火时其含量最高,之后随着温度的升高逆变奥氏体的含量逐步降低;试验钢的强度、硬度及屈强比均随回火温度的升高先降低后升高。650 ℃回火时,可得到细密的回火索氏体+逆变奥氏体的复相组织,试验钢具有较低的屈强比及良好的冲击性能。  相似文献   

7.
研究了淬火温度对25CrMoNiVNbTi钢的高温拉伸性能和组织的影响。结果表明:在900~1100 ℃温度范围内,随着淬火温度的升高,25CrMoNiVNbTi钢在600 ℃的高温拉伸性能先增加后降低,本试验条件下的最佳热处理工艺为1000 ℃淬火30 min+620 ℃回火2 h,经该工艺处理后该钢在600 ℃下拉伸时其屈服强度和抗拉强度分别达到974 MPa及1046 MPa,洛氏硬度为40.5 HRC,显微组织为回火索氏体、贝氏体、碳化物和少量的残留奥氏体,而且钢的晶粒细小,位错密度高,大大提高了该钢在高温下的力学性能。扫描观察结果表明该钢在高温下拉伸后的断口为韧性断裂。  相似文献   

8.
比较了含1.90%Ni和4.92%Ni中碳Cr-Ni-Mo系超高强度钢不同淬火温度低温回火后的力学性能.分析了淬火温度、残余奥氏体量对力学性能的影响。结果表明,900℃淬火200℃回火后试验钢的抗拉强度、伸长率和-40℃冲击吸收功分别大于2200MPa、10%和10J。随着淬火温度的提高,抗拉强度、断后伸长率和断面收缩率先缓慢提高到最大值后开始缓慢下降。4.92%Ni试验钢中大量残余奥氏体导致其屈服强度和屈强比降低、应变硬化指数增大,在拉伸过程中残余奥氏体应变诱导马氏体相变和相变诱发塑性(TRIP),伸长率、静力韧度和塑性变形能均有明显提高。  相似文献   

9.
研究了淬火温度对25CrMoNiVNbTi钢的高温拉伸性能和组织的影响。结果表明:在900~1100℃温度范围内,随着淬火温度的升高,25CrMoNiVNbTi钢在600℃的高温拉伸性能先增加后降低,本试验条件下的最佳热处理工艺为1000℃淬火30 min+620℃回火2 h,经该工艺处理后该钢在600℃下拉伸时其屈服强度和抗拉强度分别达到974 MPa及1046 MPa,洛氏硬度为40.5 HRC,显微组织为回火索氏体、贝氏体、碳化物和少量的残留奥氏体,而且钢的晶粒细小,位错密度高,大大提高了该钢在高温下的力学性能。扫描电镜观察结果表明该钢在高温下拉伸后的断口为韧性断裂。  相似文献   

10.
通过SEM、TEM和XRD分析,结合拉伸试验、断裂韧度试验和硬度测试,研究了淬火温度对新型齿轮钢组织及力学性能的影响。结果表明,经850~1050℃淬火+深冷+回火,试验钢的抗拉强度、屈服强度和洛氏硬度均随着淬火温度的升高先升高后逐渐降低,在900℃时分别达到峰值,此时抗拉强度为1483 MPa,断裂韧度则在淬火温度为1000℃时达到最高,为62.4 MPa·m1/2。淬火温度低于1000℃时,试验钢的晶界及马氏体板条上存在富Mo型M6C碳化物,碳化物随淬火温度的升高逐渐溶解,在1000℃时未再观察到未溶相。试验钢的原始奥氏体晶粒尺寸随淬火温度的升高先缓慢增大,当温度超过1000℃时,原始奥氏体晶粒及组织快速粗化,断裂韧度和断面收缩率也出现大幅度降低。  相似文献   

11.
研究了临界区回火温度对Fe-4Mn-1.2Cr-0.3Cu-0.6Ni中锰钢组织与力学性能的影响。通过热轧后直接淬火+临界区回火的工艺制备试验钢。采用光学显微镜(OM)、电子探针显微分析仪(EPMA)的扫描功能、透射电镜(TEM)、拉伸试验及冲击试验等对轧后淬火态和回火态试验钢的显微组织及力学性能进行了表征。结果表明,试验钢热轧后淬火可获得较高位错密度的板条马氏体,经过临界区回火后获得在回火马氏体基体上分布残留奥氏体的复合组织。随着临界区回火温度的升高,试验钢的抗拉强度呈升高趋势,而屈服强度先下降后增加,伸长率的变化趋势与试验钢中的残留奥氏体含量相关,冲击性能随临界区回火温度的升高呈先升高后降低的趋势。630 ℃回火后试验钢的拉伸性能最佳,650 ℃回火后试验钢的冲击性能最佳,确定最佳临界区回火温度区间为630~650 ℃。  相似文献   

12.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

13.
对12MnNiVR压力容器钢进行热轧和950℃淬火,并对其分别在600、630、660和690℃下进行回火处理。并通过光学显微镜、扫描电镜、透射电镜、拉伸试验机和冲击试验机对试验钢的进行微观组织形貌观察和力学性能检测。结果表明:淬火后试验钢组织由马氏体、贝氏体及少量残留奥氏体组成。回火后组织主要是回火马氏体以及回火索氏体。随回火温度的升高,部分回火马氏体消失,形成回火索氏体组织。试验钢强度在较低的回火温度时下降缓慢,较高回火温度下强度急剧下降而伸长率则在不断增加。试验钢690℃回火时,获得较优的综合力学性能,屈服强度、抗拉强度、伸长率和-40℃下的冲击吸收能量分别达到605 MPa,670 MPa,25. 9%,113. 7 J。  相似文献   

14.
对Q345钢板进行热处理,研究了淬火温度和回火温度对Q345钢显微组织、室温拉伸和冲击性能的影响。结果表明,热轧态Q345钢板的组织为铁素体和珠光体,晶粒大小不一、形状不规则,同时还含有少量混晶组织;随着回火温度的升高,Q345钢的屈服强度、抗拉强度、断后伸长率和断面收缩率都呈先增加而后降低趋势;当900℃淬火+600℃回火时,Q345钢具有较好的综合力学性能。回火温度为200~680℃时,Q345钢的拉伸断口表现为韧性断裂特征;低温下回火(≤400℃),冲击断口表现为解理和准解理断裂特征,在600℃和680℃较高温度回火后,冲击断口为韧性断裂特征。  相似文献   

15.
采用不同的奥氏体化温度、淬火温度和回火温度,对QP980汽车高强钢试样进行了热处理,分析了试样的显微组织、拉伸性能和冲击性能。结果表明:奥氏体化温度和淬火温度对试样残余奥氏体含量有明显影响,回火温度对试样残余奥氏体含量无明显影响。奥氏体化温度、淬火温度和回火温度均对试样的平均晶粒尺寸、抗拉强度、屈服强度、断后伸长率和冲击韧度有明显影响。QP980汽车高强钢的热处理工艺优选为:奥氏体化温度1030℃、淬火温度60℃、回火温度480℃。  相似文献   

16.
张蒙  吴光亮 《金属热处理》2023,(10):157-162
对NM500耐磨钢进行940℃淬火+两相区淬火+回火(QLT)热处理,研究了两相区淬火温度(820~880℃)和回火温度(200~600℃)对试验钢显微组织和力学性能的影响。结果表明,在两相区淬火温度从820℃升至880℃的过程中,试验钢为马氏体和铁素体双相组织,且铁素体含量逐渐降低,马氏体含量增多,试验钢的强度和硬度提高,-40℃冲击吸收能量从67 J降低至33 J。在870℃两相区淬火,200~600℃范围内回火时,随回火温度的升高,板条马氏体和残留奥氏体逐渐分解,碳化物形态和分布发生变化;试验钢抗拉强度和硬度逐渐降低,低温冲击性能先降低后升高,试验钢达到良好强韧性匹配的回火温度区间为200~250℃。  相似文献   

17.
采用金相显微镜、扫描电镜、透射电镜和拉伸试验机等手段,研究了回火温度对等温淬火态新型建筑钢板微观组织和力学性能的影响。结果表明,等温淬火态试样由针状下贝氏体和残留奥氏体组成,235~435℃回火处理后,基体组织中的残留奥氏体含量随着回火温度的升高而不断减少,下贝氏体的板条界面随着回火温度升高而逐渐模糊。经过235~435℃回火保温1 h的热处理后,试验钢的抗拉强度和规定塑性延伸强度都有不同程度减小,而断后伸长率却明显提高,强塑积呈现随着回火温度升高而先增大后减小的特征,在回火温度为285℃取得最大值(34 017 MPa·%)。回火态试验钢的室温冲击吸收能量都高于等温淬火态试样,且回火温度低于385℃时具有较好的冲击性能,冲击断口形貌与冲击性能测试结果相吻合。  相似文献   

18.
利用自制的小型拉伸装置对淬火+回火热处理后的ZG06Cr13Ni4Mo马氏体不锈钢试样进行单轴拉伸变形,使用同步辐射高能X射线衍射技术对钢中逆变奥氏体力学稳定性和相变诱导塑性(transformation induced plastic,TRIP)进行原位研究.结果表明,随着拉伸应力的增加,逆变奥氏体衍射峰积分强度逐渐减弱,逆变奥氏体在变形过程中逐步发生了形变诱导马氏体相变.利用Rietveld全谱精修拟合方法对不同应力状态下的逆变奥氏体相分数进行定量分析,发现逆变奥氏体的形变诱导马氏体相变开始于材料的宏观弹性阶段,并持续至整个塑性变形阶段.通过比较分析不同热处理工艺下逆变奥氏体的形变诱导相变过程和材料的加工硬化行为发现,逆变奥氏体的形变诱导相变的出现增加了马氏体基体的位错密度,导致材料加工硬化指数的提高,有效提高了材料的塑性.  相似文献   

19.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。  相似文献   

20.
对C-Mn-Si-Al高强钢进行了不同温度淬火+回火试验,采用SEM、XRD、拉伸试验等研究了不同温度淬火对C-Mn-Si-Al钢组织及力学性能的影响。结果表明:660~780℃不同温度淬火+回火的C-Mn-Si-Al组织主要为马氏体+铁素体+残余奥氏体。随着淬火温度的升高,C-Mn-Si-Al试验钢中奥氏体含量先增加后减少,740℃淬火+回火的C-Mn-Si-Al试验钢中奥氏体含量达到最大值,为33.5%。随着淬火温度的升高,C-Mn-Si-Al钢的强度逐渐升高,伸长率和强塑积先升高后降低,740℃淬火+回火的C-Mn-Si-Al试验钢的强塑积达到最大值15089.2 MPa·%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号