首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对汽车发动机用AZ91合金进行了等离子熔覆表面改性处理,对比分析了Al-Si涂层和Al-Si+Y涂层的显微组织和物相组成,并对改性层的硬度、耐磨性和耐腐蚀性能进行了比较。结果表明,Al-Si熔覆层主要含有α-Mg、Mg17Al12、Mg2Si和Al3Mg2相,Al-Si+Y熔覆层主要含有α-Mg、Mg17Al12、Al3Mg2、Mg2Si和Al2Y相;Al-Si和Al-Si+Y涂层的硬度都高于AZ91合金基体,Y元素的加入形成了细晶强化和弥散强化使得Al-Si+Y涂层具有较高的硬度;汽车发动机表面的耐磨性能从高至低依次为:Al-Si+Y涂层>Al-Si涂层>AZ91合金基材;等离子熔覆改性处理后的发动机缸体的耐腐蚀性能有所提高,其中Al-Si+Y涂层的耐腐蚀性能最好。  相似文献   

2.
胡新林  钱鸣 《金属热处理》2016,41(4):170-174
采用预置式两步激光熔覆的方法在汽车发动机用AZ91合金表面进行了等离子喷涂+激光熔覆改性处理,通过金相、扫描电镜、XRD、硬度和极化曲线等测试手段,研究了激光熔覆Al-Si层的显微组织和耐腐蚀性能。结果表明,激光熔覆层主要由α-Al和(α-Al+β-Si)共晶组织组成;激光熔覆层的显微硬度要高于等离子喷涂层,且两种涂层的显微硬度都要高于基体合金;改性层和基体合金的耐腐蚀性能从高至低依次为:激光熔覆层>等离子喷涂层>AZ91合金。  相似文献   

3.
《铸造技术》2016,(12):2591-2593
采用激光熔覆技术在汽车用镁合金表面制备Al-Si合金涂层,对Al-Si合金涂层的组织和性能进行研究。结果表明,Al-Si合金熔覆层组织主要为树枝晶,主要物相为Mg_2Al_3、Mg_(17)Al_(12)、Mg_2Si。镁合金激光表面熔覆Al-Si合金涂层硬度分为4个不同区域,分别为熔覆层、结合区、热影响区和镁基体,其中次表层硬度最高,基体层硬度最低。镁合金表面随着激光功率的增加,熔覆层耐磨性和耐腐蚀性能提高。随着激光功率的增加,耐磨性先增加后降低,耐蚀性逐渐提高。  相似文献   

4.
以工程测量仪器用AZ91D镁合金为研究对象,采用低熔点Al-Si共晶合金粉末在合金表面进行了激光表面处理。结果表明,激光表面改性层主要由Mg_2Si、Al_(17)Mg_(12)和Al_3Mg_2相,以及α-Mg和Al固溶体组成;Al-Si合金化改性层的硬度分布均匀,且明显高于AZ91D母材;激光表面改性层的自腐蚀电位较AZ91D合金基材发生了正向移动,合金的耐腐蚀性能更优异。  相似文献   

5.
对体育器械用AZ91合金进行了表面等离子熔覆改性处理。研究了AZ91合金基材、TiB_2-TiC和TiB_2-TiC:Al=2:1改性层的显微组织,并对改性层的硬度、耐磨性和耐腐蚀性能进行了研究。结果表明,随基体表面距改性层表面距离的增加合金,合金显微硬度逐渐降低,熔覆层的硬度最高;改性层中的TiB_2、TiC硬质相以及Mg_(17)Al_(12)相的存在可提高表面耐磨性;改性层耐腐蚀性得到提高,TiB_2-TiC:Al=2:1改性层的耐腐蚀最好。  相似文献   

6.
以AZ91镁合金为对象,利用激光表面合金化方法对其进行表面改性,研究激光熔覆合金层的微观组织、硬度和耐腐蚀性能。结果表明,激光合金化涂层的主要物相为Mg2Si、Al12Mg17、Al3Mg2金属间化合物以及α-Mg和Al固溶体。激光合金化改性后,涂层的显微硬度明显高于AZ91镁合金基体,耐腐蚀性能也大幅度提高。  相似文献   

7.
采用激光熔覆Al-Si粉体以提高Mg-6Zn-1Ca合金的表面性能,并采用X射线衍射(XRD)、扫描电镜(SEM)和能谱(EDS)技术研究熔覆层的相组成、组织结构和化学成分。结果表明,熔覆层主要由α-Mg、Mg_2Si枝晶、Mg_(17)Al_(12)和Al_3Mg_2相组成。由于生成了Mg_2Si、Mg_(17)Al_(12)和Al_3Mg_2金属间化合物以及快速熔凝的晶粒细化作用,熔覆层的显微硬度(HV_(0.025) 310)比基体硬度(HV_(0.025) 54)高近5倍。同时,在3.5%NaCl(质量分数)水溶液中的腐蚀性能测试显示,腐蚀电位从基体的-1574.6 mV上升到了熔覆后的-128.7 mV,而腐蚀电流密度则从基体的170.1μA/cm~2降至熔覆后的6.7μA/cm~2。这些研究结果显示,激光熔覆Al-Si粉体可以显著提高Mg-6Zn-1Ca合金表层的硬度和耐蚀性。  相似文献   

8.
镁合金表面激光熔覆Al-Si合金涂层的组织和耐磨性   总被引:1,自引:0,他引:1  
以Al-Si共晶合金粉末为熔覆材料,在AZ91D镁合金表面进行了激光熔覆试验,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对激光熔覆层的组织、成分和相组成进行了分析,测试了激光熔覆层的显微硬度和磨损性能。结果表明,激光熔覆层由α-Mg过饱和固溶体和Mg17Al12、Mg2Si、Al3Mg2金属间化合物等相组成,且与基材之间形成了良好的冶金结合。由于激光熔覆层中存在金属间化合物析出相强化、细晶强化和固溶强化等多种强化作用,熔覆层的硬度比AZ91D合金提高了3#4倍,磨损量比AZ91D合金降低了72%。  相似文献   

9.
采用激光熔覆Al-Si/Al_2O_3粉体来对Mg-Nd-Zn-Zr镁稀土合金进行表面改性,并对熔覆层的形貌、组织、相组成及性能进行了表征。X射线衍射(XRD)分析和扫描电镜(SEM)观察显示,熔覆层主要由α-Mg、Mg_2Si、Mg_(12)Nd以及Al_(3.21)Si_(0.47)或Mg_(17)Al_(12)几种相组成,而Al_2O_3则大部分聚集在熔覆层和基体之间的界面处。截面硬度测试显示,熔覆层的显微硬度最高值在3090至4750 MPa之间,是基体硬度(550 MPa)的5~8倍以上,这主要归结为熔覆层内晶粒细化、固溶强化、增强相的形成以及氧化物颗粒的弥散强化作用。在3.5%(质量分数)NaCl水溶液中的电化学测试显示,激光熔覆后的镁合金腐蚀电位上升,腐蚀电流密度可由基体的1.683×10~(-4)A/cm~2下降至激光熔覆后的0.843×10~(-5)A/cm~2,表明激光熔覆后样品表面的腐蚀性能也得到显著提高。  相似文献   

10.
《铸造技术》2017,(10):2348-2350
以AZ91D为基体,研究了添加Be和Y对其压铸组织的影响。结果表明,加入Be,AZ91D合金组织中析出了Mg_(3.1)Al_(0.9)、Mg_2A_(l3)和Mg_(17)Al_(12)相。Be含量增加,AZ91D合金α-Mg相枝晶得到细化,有球化趋势。Y也可显著细化α-Mg基体,并细化β-Mg_(17)Al_(12)相;随Y含量的增加,压铸AZ9D合金组织得到逐步细化,相组成为α-Mg、Mg_(0.97)Zn_(0.03)和Mg_(3.1)Al_(0.9)。  相似文献   

11.
利用激光熔覆技术在AZ91镁合金表面制备Al-30%Cu(质量分数)合金涂层。采用X射线衍射仪、扫描电子显微镜、显微硬度仪、电化学工作站表征分析激光熔覆试样的组织和性能。结果表明:激光熔覆层与基体呈现出良好的冶金结合,无明显的气孔裂纹等缺陷。其中,熔覆区出现大量的牙齿状、花瓣状和细颗粒状组织,结合区为典型的树枝晶组织。XRD结果表明:熔覆层主要由二元相Mg_(17)Al_(12)、AlMg、CuMg_2和三元相Al_2CuMg、Mg_(32)Al_(47)Cu_7组成。由于晶粒细化和新形成的金属间化合物的共同作用,合金熔覆层的显微硬度平均值(392.2HV)为AZ91镁合金基体硬度(约70HV)的5.6倍。熔覆层的腐蚀电位比基体的提高179.2 mV,腐蚀电流密度较基体的降低两个数量级,耐蚀性得到较大的改善。  相似文献   

12.
为提高AZ91D镁合金的硬度、耐磨性、耐腐蚀性,在其表面预置Si粉进行激光表面改性处理,进行工艺参数的探究。结果表明:当熔覆层厚度为250μm、激光扫描功率为145 W、激光扫描速度为200 mm/min时,可获得成型良好的改性层,其主要由α-Mg、Mg_(17)Al_(12)和Mg_2Si组成,改性层平均硬度大幅提高,耐腐蚀性及耐磨性均有显著改善。  相似文献   

13.
采用等离子喷涂法在AZ91合金表面制备了不同配比的Al_2O_3+Zr O_2复合涂层(分别记为:AZ30,AZ60和AZ80),对比分析了不同配比的Al_2O_3+Zr O_2复合涂层的表面形貌、截面形貌和耐腐蚀性能。结果表明,AZ30涂层中出现了少量微裂纹和气孔;AZ60涂层中存在明显的未熔粒子和微裂纹,且数量高于AZ30涂层;AZ80涂层较为疏松,涂层致密性较差。经过等离子喷涂改性后的陶瓷层的耐腐蚀性能均优于基材,且耐腐蚀性能顺序为:AZ30涂层AZ60涂层AZ80涂层AZ91基材。  相似文献   

14.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

15.
对汽车发动机缸体用AZ91合金表面进行了等离子熔覆改性处理,对比分析了AZ91合金基体、TiB2-Al2O3和三种不同比例的Al:(TiB2-Al2O3)改性层的显微组织和物相组成,并对改性层的硬度、耐磨性和耐腐蚀性能进行了研究。结果表明,随着距离改性层表面距离的增加,显微硬度整体呈逐渐降低的趋势,不同配比的改性层的显微硬度都高于AZ91合金基体(98 HV0.1),TiB2-Al2O3改性层的显微硬度最高,随着熔覆材料中Al含量的增加,改性层显微硬度呈现逐渐降低的趋势;经过等离子熔覆TiB2-Al2O3和Al:(TiB2-Al2O3) 改性处理后的发动机缸体的耐磨性与耐腐蚀性均有所提高,其中Al:(TiB2-Al2O3)=1:2改性层的耐磨性及耐腐蚀性能最好。  相似文献   

16.
目的在镁合金上堆焊Al-Si合金涂层,分析Mg/Al界面处过渡区的组织、成分与形成过程。方法采用低成本、高效的直流脉冲熔化极气体保护焊(DC-PMIG welding),在低热输入下将ER4043(AlSi5)焊丝堆焊到AZ91D镁合金表面,形成Al-Si合金涂层。采用金相显微镜、扫描电镜、能谱仪、X射线衍射仪分析Mg/Al过渡区的微观组织,讨论过渡区的组织、成分,并分析其形成过程与机理。结果过渡区分为两部分。区域Ⅰ的主要成分依次为Mg+Al_(12)Mg_(17)、Al_(12)Mg_(17)、Al_(12)Mg_(17)+Al_3Mg_2和Al_3Mg_2,不规则块状Mg_2Si相弥散分布于其中。区域Ⅱ的主要成分为柱状α-Al,表面析出了大量点状Al_3Mg_2,α-Al柱状晶晶界处存在黑色点状Mg_2Si。结论直流脉冲熔化极气体保护焊能够在AZ91D镁合金表面制备Al-Si合金涂层,基体与涂层之间存在过渡区,过渡区中不同位置的镁、铝相对含量不同,成分也不相同。区域Ⅰ与区域Ⅱ中Mg_2Si不同的析出顺序,使其微观结构不同:Mg_2Si在镁含量相对较多的区域Ⅰ中优先析出并长大,形成块状Mg_2Si;而区域Ⅱ中率先析出α-Al,随后在α-Al晶界处形成了黑色点状Mg_2Si。  相似文献   

17.
对AZ91镁合金发动机缸体进行了表面等离子熔覆改性处理,对比分析了AZ91合金基材、TiB_2-Al_2O_3和3种不同比例的Al与TiB_2-Al_2O_3复合改性层的显微组织和物相组成,并对改性层的硬度、耐磨性和耐腐蚀性能进行了研究。结果表明,随着距离改性层表面距离的增加,显微硬度呈现逐渐降低的趋势,但改性层的显微硬度都高于AZ91合金基体,而TiB_2-Al_2O_3改性层的显微硬度最高。随着熔覆材料中Al含量的增加,改性层显微硬度逐渐降低;随着磨损时间延长,基材与不同改性层的磨损质量损失都逐渐增加。3种不同配比的Al与TiB_2-Al_2O_3复合改性层中w(Al)∶w(TiB_2-Al_2O_3)=1∶2改性层的耐磨性能最好;经过等离子熔覆复合改性处理后的发动机缸体的耐腐蚀性能有所提高,其中,w(Al)∶w(TiB_2-Al_2O_3)=1∶2时改性层的耐腐蚀性能最好。  相似文献   

18.
以Al-Si共晶成分合金粉末为熔覆材料在AZ91D镁合金表面进行了激光熔覆试验.采用光学显微镜、扫描电镜、能谱仪、X射线衍射仪分析了涂层的微观组织,并利用Thermo-Calc软件分析了涂层的相组成、相成分及结晶转变过程.结果表明,涂层微观组织分为两层,上半层为Al12Mg17基体上均匀分布着Mg2Si树枝晶和细小的Al3Mg2针状相,其结晶过程为液相→液相+Mg2Si→Mg2Si+Al12Mg17→Mg2Si+Al12Mg17+Al3Mg2;下半层由Mg2Si颗粒、α-Mg树枝晶和(α-Mg+Al12Mg17)共晶组织组成,其结晶过程为液相→液相+Mg2Si→液相+Mg2Si+α-Mg→Mg2Si+α-Mg+(α-Mg+ Al12Mg17)共晶组织.研究结果对AZ91D合金表面激光熔覆Al-Si合金涂层微观组织及其转变过程分析具有指导意义.  相似文献   

19.
目的 在AZ91D镁合金表面熔覆Mg-Gd-Y-Zr合金,分析熔覆层微观组织演变规律及其对熔覆层力学性能的影响。方法 采用直流脉冲钨极氩弧焊(DC PTIG welding),在不同平均电流下,将Mg-Gd-Y-Zr合金焊丝送入AZ91D镁合金熔池,制备熔覆层。采用金相显微镜、扫描电子显微镜、能谱仪及X射线衍射仪,分析不同平均电流条件下的熔覆层微观组织。基于显微维氏硬度仪与往复式滑动摩擦磨损设备,表征熔覆层硬度及摩擦学性能。结果 熔覆层微观组织主要由α-Mg、Mg24(Gd,Y)5及Al2(Gd,Y)相组成。熔覆层呈现明显分层特征,主要是由晶界Mg24(Gd,Y)5相分布差异造成。平均电流增大,熔覆层中心晶粒尺寸先保持不变,而后快速增大,Al2(Gd,Y)相由细小弥散颗粒变为团聚状分布,晶界Mg24(Gd,Y)5相则由连续网状演变为不连续岛状,直至变为细小颗粒状。熔覆层硬度随平均电流增加,呈现略微上升,随后快速下降的趋势,其最高硬度达90.8HV。摩擦磨损测试过程中,平均电流为110 A所得熔覆层失重速率小于AZ91D基材。结论 采用DC PTIG在AZ91D基体表面成功制备了耐磨性能优于基体的含Gd、Y稀土元素的熔覆层,稀释率决定熔覆层Al2(Gd,Y)相形貌及分布规律。  相似文献   

20.
采用高速激光熔覆技术在Mg-Gd-Y-Zr镁合金表面制备Al-Si涂层。通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)以及电化学分析测试、摩擦磨损测试对熔覆层的微观组织及性能进行表征,研究了基体与Al-Si涂层的冶金机理以及耐磨耐蚀能力。结果表明,熔覆层组织包括树枝状α-Mg固溶体、不规则块状Mg2Si、α-Mg+Al12Mg17共晶以及花瓣状组织Al3Mg2。由于细晶强化和第二相强化等原因,Al-Si涂层的硬度达到160 HV0.1。此外,与镁合金基体相比,Al-Si涂层的耐腐蚀性能显著提高,自腐蚀电位相比基体提高约200 mV,自腐蚀电流密度降低2个数量级,抗磨损效果提高30.7%,因此Al-Si涂层有望成为稀土镁合金更有前景的耐磨耐蚀防护涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号