首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过IQP(两相区退火+淬火+配分)处理工艺,采用场发射扫描电子显微镜(SEM)和X射线衍射仪(XRD)等手段,研究了低碳硅锰钢中Mn元素的配分行为及其配分工艺参数对IQP处理后组织与性能的影响。结果表明:经IQP工艺处理,奥氏体化后并未消除IQ工艺Mn配分效果,室温组织为板条状马氏体、残余奥氏体及少量块状马氏体。在相同配分温度下,随着配分时间延长,残余奥氏体含量是先增加后减小。材料抗拉强度总体呈现下降趋势;伸长率变化与残余奥氏体量的变化趋势基本一致。其综合性能最佳的强塑积可达29046.65 MPa·%。  相似文献   

2.
通过双相区等温-水淬(IQ)和双相区等温-奥氏体化-盐浴等温后水淬(IQP)处理工艺,采用电子探针(EMPA)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和拉伸实验等手段,研究了低碳硅锰钢中Mn元素的配分行为及奥氏体化工艺参数对IQP工艺处理后材料的组织与性能的影响。结果表明:经IQP工艺处理,短时奥氏体化后并未消除IQ工艺Mn配分效果,其室温组织为板条状马氏体和残留奥氏体。随奥氏体化程度增加,材料的抗拉强度先升高后降低,最高可达1267 MPa,材料的伸长率不断降低。在恰好完全奥氏体化时的晶粒尺寸较小且C、Mn聚集程度最佳,此时残留奥氏体含量最高,伸长率的降低得以补偿。最高强塑积可达30345 MPa·%,实现了强度和塑性的优良结合。  相似文献   

3.
采用QPB和IQPB工艺,研究低碳硅锰贝氏体钢经QPB和IQPB工艺处理后的组织性能。结果表明:试验钢通过两种工艺热处理后均得到粒状贝氏体和板条状贝氏体组织,且经IQPB工艺热处理后得到的板条状贝氏体更多;QPB工艺热处理后残留奥氏体量仅为8.19%,IQPB工艺热处理后残留奥氏体量高达12.08%。两种工艺下测试力学性能,IQPB试样的抗拉强度为900 MPa,伸长率高达27%,QPB试样的抗拉强度为920 MPa,伸长率为22%,经过两相区Mn配分强塑积提高4060 MPa·%。  相似文献   

4.
对一种含Cu低碳硅锰钢分别采用IQ、QP和IQP热处理工艺,研究双相区Cu配分行为并分析其对马氏体组织形貌、残留奥氏体及力学性能的影响。结果表明,试验钢经IQ工艺处理,在双相区保温时Cu元素从铁素体向奥氏体中配分,Cu配分明显,并且不影响C和Mn的配分效果。试验钢经IQP工艺处理后,组织基本为板条马氏体,且马氏体板条清晰,部分板条有断裂的现象。与经QP工艺处理相比,试验钢经IQP工艺处理后残留奥氏体体积分数显著提高,从9.6%提高到了13.2%。对比QP工艺,试验钢经IQP工艺处理后,抗拉强度有一定降低,但伸长率大大提高,强塑积达到27 GPa·%。  相似文献   

5.
以低碳Si-Mn钢为研究对象,采用双相区保温-淬火(IQ)工艺研究预先Mn配分行为,并对其配分现象进行表征,采用淬火-配分(QP)及双相区保温-奥氏体化-淬火-配分(IQP)热处理工艺,探讨了预先Mn配分处理对低碳高强QP处理钢中C配分和残余奥氏体及力学性能的影响.结果表明,实验钢在双相区保温过程中C,Mn不断向奥氏体内扩散,淬火处理后C,Mn在马氏体(原双相区奥氏体)内呈现明显的富集现象;实验钢经IQP工艺处理后,室温组织中Mn富集现象依然很明显,C在马氏体板条间富集;随着C配分时间的延长,实验钢抗拉强度不断减小,延伸率均呈先增加后降低趋势,在C配分时间为90 s时,IQP工艺下钢的强塑积达到23478 MPa·%;IQP工艺中预先Mn配分处理,使得实验钢在一次淬火时保留更多的奥氏体,随后C配分促使更多的C原子扩散到这些奥氏体中,从而二次淬火至室温获得更多残余奥氏体.IQP工艺中C,Mn的综合作用稳定的残余奥氏体体积分数比相同条件下QP工艺中C配分稳定的残余奥氏体体积分数最大增多2.4%左右.  相似文献   

6.
通过IQ(两相区退火+淬火)和IQP(两相区退火+淬火+配分)热处理工艺,采用EPMA、SEM和XRD等手段,研究含Cu低碳钢Cu配分行为及不同配分时间对组织性能的影响。结果表明,在双相区保温过程中,试验钢的C、Cu和Mn三种元素均从铁素体向奥氏体中配分,且Cu元素配分效果明显。经IQP工艺处理的钢的组织是板条马氏体和残余奥氏体,随着Cu配分时间增加,原始晶粒尺寸变大,马氏体组织变大、板条变粗。随着Cu配分时间增加,钢的抗拉强度逐渐减小,伸长率先增加后减小。残余奥氏体体积分数的变化趋势和伸长率的变化趋势基本一致,在配分时间为40 min时,残余奥氏体体积分数和伸长率达到最大值,此时材料综合力学性能最佳,抗拉强度为1076 MPa,强塑积达到26254.4 MPa·%。  相似文献   

7.
采用场发扫描电镜、X射线衍射仪和电子探针研究了双相区合金元素不同配分温度对0.12C-1.33Mn-0.55Cu钢的组织性能和残留奥氏体含量的影响。结果表明:试验钢在双相区配分后,C、Cu和Mn元素均出现明显的配分效果,且Cu、Mn元素配分作用有利于盐浴分级淬火C配分进行,保留更多残留奥氏体提高塑性;IQP工艺处理得到马氏体和残留奥氏体组织,随着双相区配分温度提高原奥氏体晶粒尺寸变大,马氏体板条变粗,位向增多;随着配分温度的提高,试验钢的抗拉强度提高,伸长率逐渐下降,残留奥氏体含量的变化趋势与伸长率基本一致,在780℃时强塑积最大为26 GPa·%,此时残留奥氏体体积分数为14.7%,伸长率为24.4%,综合力学性能最佳。  相似文献   

8.
基于合金减量化原则,应用热轧+超快冷+配分热处理一体化工艺技术制备了高强塑积的低碳热轧Q&P钢,借助光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和室温拉伸试验等研究了配分时间对试验钢组织性能的影响。结果表明:随着配分时间增加,试验钢组织中的条状马氏体逐渐增多,残留奥氏体体积分数先增加后减少,碳化物析出增加;其抗拉强度和屈服强度减小,伸长率和强塑积先增加后减小,这是残留奥氏体含量和碳化物析出综合作用的结果;屈强比先减小后增加,加工硬化率(n值)先增加后减小。配分30 s的试验钢,综合力学性能最好,残留奥氏体体积分数最多为11.5%,抗拉强度为1093 MPa,伸长率为21.5%,屈强比最低为0.63,n值最高为0.13,强塑积最高为23.50 GPa·%。  相似文献   

9.
通过IQP(两相区退火+淬火+配分)热处理工艺,采用SEM和XRD等手段,研究了奥氏体化保温温度对低碳钢组织与性能的影响。结果表明:当奥氏体化温度AT升高到950℃时,双相区中产生的铁素体完全转变为奥氏体,得到的室温组织为马氏体;随着奥氏体化温度的升高,马氏体板条变粗大,板间距离变大,晶粒变大。当AT=930℃时,室温组织含有铁素体,Mn元素未能完全聚集到奥氏体晶粒中,此时伸长率最大(25.45%),抗拉强度最小(1084MPa),残余奥氏体量最小(7.02%)。当AT=950℃时,实现了完全奥氏体化,Mn元素富集程度最高,伸长率降低,抗拉强度和残余奥氏体量最大值分别是1267 MPa、9.83%。当AT=970℃,奥氏体中的Mn元素扩散均匀化,马氏体晶粒变大,板条间距变宽,伸长率达到最小值(23.2%),抗拉强度降低,残余奥氏体量降低8.87%。  相似文献   

10.
利用Thermo-calc计算,采用双相区保温淬火(IQ)工艺对低碳硅锰钢双相区等温过程中的组织演变和C、Mn配分热力学进行了研究。结果表明:在双相区,C、Mn在奥氏体中的固溶度随温度升高呈递减趋势且远大于铁素体,为C、Mn配分提供了热力学条件;在800℃等温不同时间后淬火,室温组织为铁素体、马氏体加少量M/A岛,等温30 min时接近平衡相变;双相区等温过程中C、Mn由铁素体向奥氏体中配分,使得部分小的奥氏体晶粒热稳定性提高,淬火后形成室温残余奥氏体。  相似文献   

11.
研究了低碳硅锰钢经IPQ和IQP工艺处理后的组织性能。结果表明:经IPQ工艺处理得到的马氏体板条较IQP工艺粗大,IQP工艺下的部分板条马氏体形貌模糊;IPQ工艺利用Mn配分使钢具有12.6%的伸长率,强塑积16128MPa·%,IQP工艺利用Mn配分和C配分的综合作用,使得伸长率大幅提高,强塑积达到33715 MPa·%;较IPQ工艺只有Mn配分作用稳定残余奥氏体,IQP工艺在Mn、C配分共同作用下,使残余奥氏体量较IPQ工艺提高了6%。  相似文献   

12.
采用双相区保温淬火(I&Q)和双相区保温+奥氏体化淬火(I&P&Q)工艺和直接淬火(DQ)工艺,结合热力学计算,研究了低碳硅锰钢热处理过程中Mn配分行为及其对组织演变和力学性能的影响机制。结果表明:经I&Q工艺处理,Mn在室温马氏体中出现了明显富集,马氏体以条状、块状、团状三种形态分布,化学位梯度驱使着Mn由铁素体向奥氏体中配分,Mn在晶界处的配分行为影响着晶界的迁移方向,使得形成不同形态的奥氏体晶粒; I&P&Q工艺处理后Mn在马氏体中呈不均匀分布,较DQ工艺,I&P&Q工艺使钢的伸长率由5.2%提高到10.9%,强塑积提高了6812 MPa·%。  相似文献   

13.
采用双相区保温淬火(IQ)和双相区保温+奥氏体化淬火(IPQ)工艺和直接淬火(DQ)工艺,结合热力学计算,研究了低碳硅锰钢热处理过程中Mn配分行为及其对组织演变和力学性能的影响机制。结果表明:经IQ工艺处理,Mn在室温马氏体中出现了明显富集,马氏体以条状、块状、团状三种形态分布,化学位梯度驱使着Mn由铁素体向奥氏体中配分,Mn在晶界处的配分行为影响着晶界的迁移方向,使得形成不同形态的奥氏体晶粒;IPQ工艺处理后Mn在马氏体中呈不均匀分布,较DQ工艺,IPQ工艺使钢的伸长率由5.2%提高到10.9%,强塑积提高了6812 MPa·%。  相似文献   

14.
杨康  史娜  丁敬  于良  方强 《金属热处理》2022,47(10):191-197
基于亚稳奥氏体形变诱导相变理论,在实验室采用盐浴炉对800 MPa级冷轧双相钢DP780的I&Q&P(临界退火与淬火配分)工艺进行了探讨,并采用光学显微镜、扫描电镜、拉伸试验机与XRD对不同工艺下试验钢的组织性能进行了研究。结果表明,在I&Q&P工艺试验条件下,试验钢的显微组织由铁素体、马氏体与残留奥氏体组成;830 ℃退火时铁素体晶粒尺寸以>5 μm为主,860 ℃退火下其晶粒尺寸以<5 μm为主。830 ℃退火时试验钢的力学性能随淬火温度的变化波动较大,860 ℃退火时试验钢的力学性能随淬火温度的变化波动较小。860 ℃退火+260 ℃淬火时,试验钢的综合力学性能最佳,其抗拉强度、伸长率与强塑积分别为802 MPa、26.8%与21.5 GPa·%,钢中残留奥氏体含量高达13.89%。  相似文献   

15.
采用二辊可逆轧机,研究了弛豫-淬火配分(F-Q&P)工艺中配分时间对试验钢组织及力学性能的影响。研究表明,在弛豫-淬火配分(F-Q&P)工艺下,试验钢的组织主要以多边形铁素体、板条马氏体和残留奥氏体组成;当配分时间延长,试验钢的强度降低,屈强比先降低后升高,伸长率增加,加工硬化指数n值和残留奥氏体含量先增加后下降。进行60 s配分后,试验钢有最低的屈强比和最高的n值,分别为0.62和0.12,抗拉强度和伸长率分别为1090 MPa和19.0%, 力学性能最佳。  相似文献   

16.
利用Thermo-Calc软件对0.1C-7.2Mn中锰钢奥氏体逆转变 (Austenite reverted transformation,ART)过程中C、Mn元素配分的热力学过程进行模拟,并根据结果进行了ART工艺的热处理试验。热力学计算和试验结果表明,当退火温度为640 ℃时,C、Mn在奥氏体中含量均高于680 ℃时的含量,在配分初始阶段,C在奥氏体中的质量分数迅速达到最高点0.87%,在由Mn元素控制界面移动的过程中,Mn在奥氏体中的质量分数接近10%;C原子配分控制的界面移动平均速率达2.5×10-4 m·s-1,主导的界面迁移占总迁移距离的46.9%;而由Mn元素配分控制的界面移动速率仅为2.5×10-12 m·s-1,迁移距离占总迁移距离的53.1%;当试样在640 ℃保温30 min时,残留奥氏体的体积分数达到36.5%,抗拉强度为1041 MPa,并且强塑积达到24.36 GPa·%。  相似文献   

17.
对碳-锰-硅钢淬火后在不同温度下进行配分处理,采用SEM结合EBSD技术对实验钢显微组织、残余奥氏体含量及力学性能进行表征。结果表明:随配分温度的升高,实验钢的抗拉强度降低,主要因为马氏体脱碳软化所致。残余奥氏体含量与伸长率变化趋势相同,由于在拉伸变形过程中残余奥氏体发生马氏体相变即TRIP效应,从而提高塑性。因此在300℃配分处理后的性能优异,抗拉强度为1328 MPa,伸长率为13%,残余奥氏体含量达到4.78%。  相似文献   

18.
《铸造技术》2017,(9):2125-2128
通过感应炉熔炼和吹氩精炼制备了ZG31Mn2Si,研究了ZG31Mn2Si的熔炼工艺及热处理工艺对其显微组织和硬度及冲击韧度的影响。结果表明:采用890℃正火+890℃水淬+200℃低温回火的热处理工艺,钢的显微组织为细小的板条状马氏体和少量呈薄片状分布在马氏体周围的残余奥氏体。其硬度和冲击韧度得到最佳匹配值,分别为47 HRC和41.25 J/cm2,基本达到了圆锥衬板的使用要求,完成了实验的预定目标。  相似文献   

19.
利用连续退火模拟试验机对两种含Nb中锰钢进行QP热处理试验,通过SEM、EBSD、拉伸试验及X射线衍射法研究了不同淬火温度对含Nb中锰QP钢组织性能的影响。结果表明:淬火温度通过影响初生马氏体量进而影响最终室温奥氏体含量,其中对5Mn钢的影响低于7Mn钢。当淬火温度为180℃时,5Mn-Nb钢获得的最大抗拉强度可达1041 MPa,伸长率为34.9%,强塑积可达36 000 MPa·%;7Mn-Nb钢在淬火温度为60℃的QP工艺处理下获得的最大抗拉强度可达1245 MPa,伸长率为32.4%,强塑积可达40 338 MPa·%。  相似文献   

20.
通过绘制试验钢种的CCT曲线,确定了贝氏体转变区间,研究了贝氏体组织对低碳硅锰钢力学性能的影响。结果表明:400℃C盐浴等温淬火得到板条贝氏体组织,板条宽度均匀,晶界清晰,抗拉强度1140MPa,伸长率21%;450℃C时试验钢为50%板条贝氏体+50%粒状贝氏体的组织,且板条间距较400℃C时大,粒状组织晶界明显比板条状组织晶界模糊;500℃C高温下组织完全转变成粒状,为少量块状马氏体+岛状残余奥氏体,该组织状态下抗拉强度大大下降,只有800MPa,但塑性较好,为30%。综合考虑,板条及粒状贝氏体混合组织力学性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号