首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
ZrO2/SiOx core/shell nanofibers with diameter ~ 50 nm were synthesized by the thermal oxidation of ZrSi2 substrates with gallium. The crystalline ZrO2 cores were grown with amorphous SiOx shells. It is proposed that the growth of crystalline ZrO2 core was guided by the prior supersaturation of Zr species in the molten gallium film, whereas the amorphous SiOx shell could be attributed to the deposition of SiO vapor on the surface of ZrO2 core. In addition, the ZrO2/SiOx core/shell nanofibers show a wide visible photoluminescence (PL) emission at 480 nm, which should originate from the SiOx shells.  相似文献   

2.
A ternary system of SiO2-CaO-P2O5 hollow nanospheres has been successfully prepared by sol-gel method using polystyrene (PS) nanospheres as template. The inorganic shell was produced using tetraorthosilicate (TEOS) as the silica source and tri-calciumphospate as calcium and phosphorus sources, respectively. The positive surface charge of the template and the [template]/[TEOS] ratio were the key parameters for the creation of a stable primary inorganic network and the further growth of the shell. The removal of the polymeric core through a thermal treatment procedure created an inner void space with mean diameter 250 nm while the outer mean diameter was 330 nm.  相似文献   

3.
Elliptical-type α-Fe2O3 nanoparticles with/without silica shell have been prepared. The core particles were coated with uniform continuous layers of silica of two different thicknesses by hydrolysis of TEOS. The obtained HCP structure elliptical α-Fe2O3 nanoparticles with ∼ 240 nm length and 100 nm width is polycrystalline in nature. The thicknesses of SiO2 shell coated on α-Fe2O3 are about 55 and 30 nm, respectively. The optical and magnetic properties of these nanoparticles have been investigated.  相似文献   

4.
CdS and Fe3O4/CdS core-shell nanoparticles were synthesized by a simple interphase method. The obtained nanoparticles were characterized by TEM, XRD and spectroscopy techniques (fluorescence and UV-vis absorption). The effects of reagent concentration on the properties of obtained nanoparticles were investigated. It was shown that the UV-vis spectra of the Fe3O4/CdS colloidal toluene solutions have the sharp edge at 311 nm and the long tail. The broad emission bands in the photoluminescence spectra of the Fe3O4/CdS organosols observed at 506, 560 and 568 nm with the increasing of cadmium oleate concentration. The thickness of CdS shell was ranged from 0.2 to 1.0 nm while the average size of the magnetite core is about 9.9 nm.  相似文献   

5.
In this paper, we prepared the ZnO nanoparticles by a simple hydrothermal method and fabricated the ZnO/SiO2 core/shell nanostructures through a sol-gel chemistry process successfully. The hollow SiO2 nanostructures were obtained by selective removal of the ZnO cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the ZnO nanoparticles were sphere-like shape with the average size of 60 nm and belonged to hexagonal wurtzite crystal structure. With the coating of SiO2, the vibration modes of Si-O-Si and Si-OH were found. Furthermore, the measurement results of optical properties showed that spectra of bare ZnO nanoparticles and ZnO/SiO2 core/shell nanocomposites exhibited similar emission features, including a blue emission peak and an orange emission band.  相似文献   

6.
Co/SiO2 nanospheres with nearly perfect core–shell structure were prepared by an improved sol–gel method combined with hydrogen reduction. The products were characterized by X-ray diffraction spectra (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectra. The results indicated that polyethylene glycol (PEG 8000) could act as a more efficient dispersive reagent than citric acid monohydrate (CAM). The average size of Co nanoparticles can be well controlled with optimum concentration of PEG 8000 and the average diameter of Co nanoparticles reaches about 30 nm with PEG 8000 concentration of 50 mg ml−1.  相似文献   

7.
8.
Silver nanoclusters coated by SiO2 were synthesized by a reverse micelle technique to obtain a core–shell microstructure with tunable particle size less than 50 nm. The refractive indices of the Ag/SiO2 nanocomposites were calculated based on a theoretical model for binary composite materials which illustrated a strong correlation to the size of the metallic core and the dielectric shell. Dynamic light scattering analysis of the Ag/SiO2 nanocomposites revealed that the refractive index of the nanocomposites was about 2.40, which was well in the range predicted by theoretical modeling. Optical absorption spectra and silver quantum dot size induced color change of the Ag/SiO2 nanocomposites suspension were also investigated.  相似文献   

9.
Magnetic Fe3O4/poly(styrene-co-acrylamide) core/shell nanospheres were prepared by one-step miniemulsion polymerization in the presence of Fe3O4 ferrofluids. The functional monomer of acrylamide was used not only to modify the surface of the nanospheres with functional groups, but also to form modified bilayer with SDBS to control the encapsulation and particle size of nanospheres. The properties of magnetic nanospheres were characterized by IR, TEM, TG and VSM. The results indicated that the superparamagnetic nanopsheres had small particle size of 60 nm, high saturation magnetization of 27.1 emu/g, high magnetic content and abundant functional groups. The possible formation mechanism of magnetic nanospheres was discussed in detail.  相似文献   

10.
《Advanced Powder Technology》2019,30(12):3171-3181
The control of coating shell becoming important to improve the applicability of magnetic nanoparticles. Herein, we present the scalable technique for preparing MgFe2O4/SiO2 core-shell nanospheres with finely tuned shell thickness and their efficiency in magnetic hyperthermia heating agent. At first, MgFe2O4 dense nanosphere derived from one-step ultrasonic spray pyrolysis (USP) technique. Silica shells were then coated on the as prepared nanospheres with tunable thickness from 10 to 30 nm. We show that the thickness of this coating is finely controlled at allowing our proposed level by using the required amount of SiO2 precursor (SiC8H20O4)/acidic catalyst (HCl) ratio where the surface area of core nanospheres are significantly considered. X-ray diffraction reveals the cubic spinel ferrite structure of core particles with crystallite size 9.6 ± 1.8 nm and Fourier transform infrared spectrum analysis confirmed the formation of SiO2. The morphological observation clarified the uniform and smooth SiO2 shell where core-shell nanostructure is highly monodispersed in a liquid medium. M-H loops confirmed the superparamagnetic nature of all samples at room temperature. Significantly reduced ion release concentration in an aqueous solvent of the coated nanospheres compared with uncoated sample demonstrates the hermetically coating feature of dense SiO2. This MgFe2O4/SiO2 core-shell nanospheres with thine SiO2 shell (10 nm) shows effective heating rate in the operative region (<46 °C) which makes them promising candidates for application as magnetic hyperthermia heating agent.  相似文献   

11.
F. Gao  P.F. Hao 《Thin solid films》2011,519(22):7750-7753
A composite film of nanocrystalline Si (nc-Si) embedded in (Al2O3 + SiO2) has been prepared on a quartz substrate by thermally evaporating a 400 nm thick Al film on a quartz substrate and annealing in air at 580 °C for 1 h. During annealing, the Al reacts with the SiO2 of the quartz substrate and produces nc-Si, which is embedded in the (Al2O3 + SiO2) film. The average size of nc-Si is ~ 22 nm and the thickness of the nc-Si:(Al2O3 + SiO2) composite film is ~ 810 nm. It is found that the prepared film is thermoelectric with a Seebeck coefficient of − 624 μV/K at 293 K and − 225 μV/K at 413 K.  相似文献   

12.
A combined procedure of sol-gel and microwave-assisted emulsion polymerization has been developed to prepare TiO2/polystyrene core-shell nanospheres with nano-scale TiO2 core and smooth and well-defined polystyrene shell. The core-shell structure and morphology were examined by TEM. The diameter and its distribution of the nanospheres were measured by dynamic light scattering. The nanospheres were characterized with Fourier transform infrared spectroscopy (FTIR). It is found that the diameter and its distribution of the TiO2/polystyrene core-shell nanospheres can be regulated by the concentration of styrene monomer in the emulsion solution.  相似文献   

13.
Zn2SiO4:Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn2SiO4:Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn2SiO4:Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn2SiO4:Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4T1-6A1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn2SiO4:Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn2SiO4:Mn color-conversion layer are described on the basis of the EL and PL spectra.  相似文献   

14.
A new binary cobalt iron pyrophosphate, CoFeP2O7 was synthesized through solid phase reaction using cobalt carbonate, iron metal and phosphoric acid in the presence of water-methanol system with further calcinations at the temperature of 500 °C. The particle size obtained from X-ray line broadening is 36 ± 7 nm for the CoFeP2O7. FTIR spectrum of CoFeP2O7 is assigned based on the P2O74− ion in the structure. The XRD, UV-Vis near IR and FTIR results of the synthesized CoFeP2O7 appear to be very similar to that of M2P2O7 (M = Fe and Co), which indicates the monoclinic phase with space group C2/m.  相似文献   

15.
TiAlN/SiO2 nanomultilayers with different SiO2 layer thickness were synthesized by reactive magnetron sputtering. The microstructure and mechanical properties were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and nano-indentation. The results indicated that, under the template effect of B1-NaCl structural TiAlN layers, amorphous SiO2 was forced to crystallize and grew epitaxially with TiAlN layers when SiO2 layer thickness was below 0.6 nm, resulting in the enhancement of hardness and elastic modulus. The maximum hardness and elastic modulus could respectively reach 37 GPa and 393 GPa when SiO2 layer thickness was 0.6 nm. As SiO2 layer thickness further increased, SiO2 transformed back into amorphous state and broken the coherent growth of nanomultilayers, leading to the decrease of hardness and elastic modulus.  相似文献   

16.
Yong Liu 《Materials Letters》2009,63(28):2526-2528
Magnetic monodisperse ferrite MFe2O4 (M = Fe, Co, Ni) nanoparticles have been successfully deposited on carbon nanotubes (CNTs) by in situ high-temperature hydrolysis and inorganic polymerization of metal salts and CNTs in polyol solution. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS) and vibrating sample magnetometer (VSM) investigations were used to characterize the final products. The influencing factors for formation of CoFe2O4 nanoparticles along CNTs have also been discussed briefly. The main advantage of this synthetic strategy is that it is beneficial for the fabrication of magnetic CNTs with a compact layer of nanoparticles and could be extended to prepare series of ferrite/CNTs nanocomposites via the substitution of metal cations.  相似文献   

17.
In this paper, TiO2 hollow nanostructures with anatase walls have been rapidly fabricated by using CuO as template and microwave heating. These TiO2 hollow nanostructures have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results showed that the TiO2 shell transformed from amorphous to anatase phase in 3 min, induced by the hot CuO core under microwave irradiation. The diameter of TiO2 hollow nanostructures is about 50-80 nm, and the length is about 200-300 nm. The thickness of the shell is about 3 nm. This method is promising to be used to synthesize other nanomaterials with a hollow nanostructure.  相似文献   

18.
High quality epitaxial Bi3.15Nd0.85Ti3O12 (BNT) thin films with thicknesses from 30 to 80 nm have been integrated on SiO2/Si substrates. MgO templates deposited by ion-beam-assisted deposition and SrRuO3 (SRO) buffer layers processed by pulsed laser deposition have been used to initiate the epitaxial growth of BNT films on the amorphous SiO2/Si substrates. The structural and ferroelectric properties were investigated. Microstructural studies by X-ray diffraction and transmission electron microscopy revealed high quality crystalline with an epitaxial relationship of (001)BNT||(001)SRO||(001)MgO and [100]BNT||[110]SRO||[110]MgO. A ferroelectric hysteresis loop with a remanent polarization of 3.1 μC/cm2 has been observed for a 30 nm thick film. The polarization exhibits a fatigue-free characteristic up to 1.44 × 1010 switching cycles.  相似文献   

19.
We report on solar cells with a cross-sectional layout: TCO/window/Bi2S3/PbS, in which a commercial SnO2 transparent conductive oxide (TCO-PPG Sungate 500); chemically deposited window layers of CdS, ZnS or their oxides; n-type Bi2S3 (100 nm) and p-type PbS (360-550 nm) absorber films constitute the cell structures. The crystalline structure, optical, and electrical properties of the constituent films are presented. The open circuit voltage (Voc) and short-circuit current density (Jsc), for 1000 W/m2 solar radiation, of these solar cells depend on the window layers, and vary in the range, 130-310 mV and 0.5-5 mA/cm2, respectively. The typical fill factors (FF) of these cells are 0.25-0.42, and conversion efficiency, 0.1-0.4%.  相似文献   

20.
Sol-gel with microwave heating was employed to prepare fine particles Sr2SiO4:Tb phosphor. X-ray diffractometer was used to characterize the structural of the samples. The Scanning Electron Microscope image shows that the particle size is about 300 nm. The phosphor particles have several advantages in the morphology, such as excellent surface quality, spherical shape, and narrow size distribution with no aggregation. The VUV luminescence measurements indicate that the phosphor presents an intense excitation band at 173 nm. Because the wavelength of excitation source in PDP is mainly at 147 and 172 nm, it makes Sr2SiO4:Tb a potential candidate for green emitting phosphor for plasma display panel (PDP) application. Photoluminescence (PL) measurements indicate that the Sr2SiO4:Tb particles present excellent green emission at 542 and 547 nm excitated at 236 and 172 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号