首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a facile hydrothermal approach to synthesize high-quality cysteamine (CA)-capped CdTe quantum dots (QDs). Oil bath heating and vigorous stirring were used to obtain better heat transfer and more homogenous solutions during the synthesis process. By this approach, the quantum yield (QY) of the resultant QDs can reach as high as 19.7%, which is the best reported data for CA-stabilized CdTe QDs. The synthesis process is under a high concentration of the precursor (> 10 mM), suggesting the potential of this route to be used in mass production of CA-capped CdTe QDs. Moreover, the pH-dependent optical properties of CA-capped CdTe QDs were also investigated.  相似文献   

2.
We report on the molecular beam epitaxy (MBE) of heterostructures with CdTe/ZnTe quantum dots (QDs) with relatively low surface density, which could be used as single-photon emitters. The QDs were formed on the surface of a 3.1- to 4.5-monolayer-thick two-dimensional strained CdTe layer by depositing amorphous Te layer and its fast thermal desorption. Subsequent thermal annealing of the surface with QDs in the absence of external Te flux led to strong broadening and short-wavelength shift of the QD photoluminescence (PL) peak. Measurement of the micro-PL spectra of individual CdTe/ZnTe quantum dots in fabricated mesastructures with a diameter of 200—1000 nm allowed estimation of the QD surface density as ~1010 cm–2.  相似文献   

3.
The surface characterization of CdTe QDs synthesized by a novel procedure using glutathione (GSH), low temperatures (60–90 °C) and K2TeO3 as the –Te precursor is reported. Fluorescence of the produced QDs is stable in the pH range 6–13 and QDs inside eukaryotic cells are highly fluorescent. The surface composition of GSH-CdTe QDs with different spectroscopic properties and particle size distributions was determined by XPS. The XPS analysis indicated that the QDs are essentially CdTe, although all nanoparticles contain 12–24% of CdO (and in one case also TeO2). GSH decomposes with reaction time releasing small amounts of S−2 ions that react with Cd(Te) to yield Cd(Te)S in a smaller amount than that of CdTe. Finally, the use of QDs in fluorescence mediated immunodetection of bacterial pathogens has been evaluated.  相似文献   

4.
Semiconductor quantum dots (QDs) have traditionally been synthesized in organic phase and transferred to aqueous solution by functionalizing their surface with silica, polymers, short‐chain thiol ligand, or phospholipid micelles. However, these complex steps result in i) a reduction of the quantum yield (QY) of QDs, ii) partial degrdation of the QDs, and iii) a drastic increase in the hydrodynamic size of QDs, which may hinder their biomedical applications. In this work, the fabrication and applications of cysteine‐capped CdTe/ZnTe QDs, which are directly synthesized in aqueous media, as optical probes for specific targeting of pancreatic and esophageal cancer cells in vitro are reported, as well as their capability for in vivo imaging. The CdTe/ZnTe QDs are synthesized in a one‐pot method and capped with amino acid cysteine, which contains both carboxyl and amine functional groups on their surfaces for bioconjugation. The fabricated QDs have an ultrasmall hydrodynamic diameter (3–5 nm), possess high QY (52%), and are non‐toxic to cells at experimental dosages. Confocal imaging is used to demonstrate a receptor‐mediated uptake of antibody‐conjugated QDs into pancreatic cancer cells in vitro. In vitro cytotoxicity studies (MTS‐assay) show that the IC50 value of these QDs is ≈160 µg mL?1, demonstrating low toxicity. In addition, the QDs are used for small‐animal imaging where the in vivo biocompatiblity of these QDs and their clearance following systemic injection is studied.  相似文献   

5.
In the present work, mercaptopropionic acid (MPA) capped CdTe and CdHgTe quantum dots (QDs) are synthesized using a method based on the bottom up approach in aqueous medium. The CdTe QDs were prepared with a two different ratios of Cd:Te (3:1 and 4:1). It was noticed that there was a minimum concentration of MPA for each Cd:Te ratio. The resulting QDs were characterized using optical absorption spectroscopy, energy dispersion X-ray (EDX) and high resolution transmission electron microscopy (HRTEM). It was found that the EDXs of CdTe and CdHgTe QDs showed that the stiochiometric ratios of CdTe obtained with Cd:Te ratio of 3:1 is 50:50 and for CdHgTe is 40:26:34 for 100?% of Hg. The band gap of CdHgTe QDs varies slightly with composition from 2.21?eV for a pure CdTe to 1.4?eV for a CdHgTe with 100?% of Hg. The HRTEM image showed a good dispersed nano-crystalline structure for the CdTe QDs with average size of 3–4?nm. The existence of the lattice planes on the HRTEM images of the QD indicated that the CdTe QDs are highly crystalline. In addition, the CdHgTe QDs size is 12?nm for 100?% of Hg.  相似文献   

6.
采用微波辐射加热的方法,以亚碲酸钠(Na2TeO3)作碲源,以谷胱甘肽(GSH)作稳定剂,在水相中合成出高质量的CdTe量子点。所合成量子点的发射波长从515~630nm可调,荧光量子产率(PLQYs)最高达95%。利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质。用双光子激发荧光法研究CdTe量子点的双光子吸收性质。用双光子激发荧光成像技术,以发红光的CdTe量子点作为双光子荧光探针成功标记了人肺腺癌细胞(A549)。  相似文献   

7.
In this present study, we demonstrate the size dependent charge transfer from CdTe quantum dots (QDs) into TiO2 substrate and relate this charge transfer to the actual behavior of a CdTe sensitized solar cell. CdTe QDs was synthesized using mercaptopropionic acid as the capping agent. The conduction band offset for TiO2 and CdTe QDs indicates thermodynamically favorable band edge positions for smaller QDs for the electron-transfer at the QD–TiO2 interface. Time-resolved emission studies were carried out for CdTe QD on glass and CdTe QD on TiO2 substrates. Results on the quenching of QD luminescence, which relates to the transfer kinetics of electrons from the QD to the TiO2 film, showed that at the smaller QD sizes the transfer kinetics are much more rapid than at the larger sizes. IV characteristics of quantum dot sensitized solar cells (QDSSC) with different sized QDs were also investigated indicating higher current densities at smaller QD sizes consistent with the charge transfer results. The maximum injection rate constant and photocurrent were obtained for 2.5 nm CdTe QDs. We have been able to construct a solar cell with reasonable characteristics (Voc = 0.8 V, Jsc = 1 mA cm−2, FF = 60%, η = 0.5%).  相似文献   

8.
The synthesis and photoluminescence (PL) properties of aqueous CdTe/ZnO core/shell quantum dots (QDs) have been investigated by using thiolglycolic acid as a capping reagent. The highlighted contribution of the present study was CdTe QDs coated with a ZnO shell by controlling the hydrolysis process of Zn(OAc)2. The QDs benefitted from overcoming the high lattice mismatch between CdTe and ZnO. The PL peak wavelength of the CdTe/ZnO QDs with high PL quantum yields up to 88% was located in a range between 547 and 596 nm by adjusting the size of CdTe cores and the thickness of ZnO shells. The results of X-ray diffraction analysis and transmission electron microscopy observation indicate that the dot-shaped CdTe/ZnO QDs (566 nm) with an average size of 2.2 nm in diameter belong to the cubic CdTe crystal structure. Due to the passivation of surface defects, it is found that the luminescence decay curves accord with a biexponential decay model of exciton and trap radiation behavior. The average PL lifetimes of CdTe (571 nm) and CdTe/ZnO (596 nm) QDs at room temperature are 27.3 and 35.1 ns, respectively.  相似文献   

9.
Most of the fluorescence resonance energy transfer (FRET)‐based sensors employing quantum dots (QDs) usually use organic fluorophores and gold nanoparticles as the quenchers. However, complex processes for the modification/immobilization of the QDs are always necessary, as the generation of FRET requires strict distance between the donor and acceptor. Herein, a simple chemical redox strategy for modulating the surface chemistry of the QDs to develop a QD‐based turn‐on fluorescent probe is reported. The principle of the strategy is demonstrated by employing CdTe QDs with KMnO4 as the quencher and ascorbic acid as the target analyte. The fluorescence of CdTe QDs is quenched with a blue‐shift upon addition of KMnO4 due to the oxidation of the Te atoms on the surface of the QDs. The quenched fluorescence of the QDs is then recovered upon addition of ascorbic acid due to the reduction of CdTeO3/TeO2 on the surface of the QDs to CdTe. The recovered fluorescence of the QDs increases linearly with the concentration of ascorbic acid from 0.3 to 10 µM . Thus, a novel QD‐based turn‐on fluorescent probe with a detection limit as low as 74 nM is developed for the sensitive and selective detection of ascorbic acid in biological fluids. The present approach avoids the complex modification/immobilization of the QDs involved in FRET‐based sensors, and opens a simple pathway to developing cost‐effective, sensitive, and selective QD‐based fluorescence turn‐on sensors/probes for biologically significant antioxidants.  相似文献   

10.
Fluorescence in the second near‐infrared window (NIR‐II, 900–1700 nm) has drawn great interest for bioimaging, owing to its high tissue penetration depth and high spatiotemporal resolution. NIR‐II fluorophores with high photoluminescence quantum yield (PLQY) and stability along with high biocompatibility are urgently pursued. In this work, a Ag‐rich Ag2Te quantum dots (QDs) surface with sulfur source is successfully engineered to prepare a larger bandgap of Ag2S shell to passivate the Ag2Te core via a facile colloidal route, which greatly enhances the PLQY of Ag2Te QDs and significantly improves the stability of Ag2Te QDs. This strategy works well with different sized core Ag2Te QDs so that the NIR‐II PL can be tuned in a wide range. In vivo imaging using the as‐prepared Ag2Te@Ag2S QDs presents much higher spatial resolution images of organs and vascular structures as compared with the same dose of Ag2Te nanoprobes administrated, suggesting the success of the core–shell synthetic strategy and the potential biomedical applications of core–shell NIR‐II nanoprobes.  相似文献   

11.
A facile green approach has been developed to control the growth regime in the aqueous synthesis of CdTe semiconductor Quantum dots (QDs) via the electrochemistry method. The Low growth temperature and slow injection of Te precursors are used to prolong the diffusion controlled stage and thus suppress Ostwald ripening during nanocrystal growth. The experimental results showed that a low concentration of Te precursor would definitely influence the growth procedure. The narrow absorption peaks in the UV-visible absorption spectra, as well as transmission electron microscopy images indicated that the as-prepared CdTe QDs had a good monodispersity. The high-resolution transmission electron microscopy (HRTEM) images and powder X-ray diffraction (XRD) pattern suggested that the as-prepared QDs have high crystallinity and cubic structure. The QDs exhibited high fluorescence QYs about 50% and the best of QY 67% without any postpreparative treatment over a broad spectral range of 516-609 nm, which could be further broadened by long-term refluxing. The current work suggested that electrochemical method was an attractive approach to the synthesis of high-quality II-VI semiconductor QDs at a large scale.  相似文献   

12.
The development of fluorescent materials with low energy consumption, low cost and desirable optical properties is needed for the perspective of practical application. Here, functional NaLa(MoO4)2@CdTe core–shell microspheres with high fluorescence were prepared by layer-by-layer self-assembly technique. Through the consecutive electrostatic adsorption of charged cetyltrimethyl ammonium bromide and CdTe quantum dots (QDs), the uniform and regular multilayer shell of CdTe QDs was synthesized. The NaLa(MoO4)2@CdTe microspheres exhibited improved photoluminescence intensity and stability of red emission, compared with that of the CdTe QDs powder, and the fluorescence enhancement mechanism were investigated. The CdTe QDs multilayer shell is expected to supersede the Eu3+ ion for producing a novel red phosphor.  相似文献   

13.
A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540-650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and -2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.  相似文献   

14.
We present the fabrication of all solid state heterojunction photovoltaic devices consisting of TiO2 films sensitized by colloidal CdSe and CdTe quantum dots (QDs) and a hole transport layer of the conjugated polymer poly(9,9-dioctyl-fluorene-co-N-(4-butylenphenyl)diphenylamine). The sensitized films were prepared by alternating the layer-by-layer deposition of TiO2 nanoparticles, water-soluble semiconductor QDs and polycations. Photovoltaic devices sandwiched between fluorinated tin oxide and gold electrodes showed a high rectification ratio and photovoltages of up to 1.15 V. Effective sensitization was observed for CdSe QDs, while incorporated CdTe QDs apparently had no such effect. These findings are explained by confinement effects in QDs.  相似文献   

15.
Ultrafast spin dynamics of excitons is studied in a double quantum well composed of Cd0.92Mn0.08Te and CdTe wells with a Cd0.80Mg0.20Te tunnel barrier, in magnetic fields, by pump-and-probe absorption spectroscopy. The excitonic injection process is clarified with the injection time of 30 ps from the Cd0.92Mn0.08Te spin aligner to the CdTe spin detector. The time dependencies of circularly polarized differential absorbances show directly the spin injection into the CdTe well. The spin relaxation of the injected excitons is observed as a function of energy in the exciton band of the CdTe well. In addition, ultrafast relaxation processes of spin-polarized carriers in the Cd0.78Mn0.05Mg0.17Te barrier are studied, when it is stacked directly with the CdTe well.  相似文献   

16.
In this report, the effect of photo-irradiation on the optical properties of thioglycolic acid (TGA) capped CdTe QDs was investigated. The photo-irradiation led to an increase in the photoluminescence (PL) efficiency of TGA-capped CdTe QDs with a low quantum yield under both the open air and nitrogen atmosphere. The photo-irradiation caused a blue-shift of PL peak under the open air and almost no change of PL peak position under the nitrogen atmosphere. The XPS study revealed the oxidation of the unpassivated surface of the Te atoms which mainly contributed to the observed optical property changes for CdTe QDs photo-irradiated under the open air. While for the CdTe QDs photo-irradiated under the nitrogen atmosphere, the decomposition of TGA led to the release of sulphur which formed a CdS shell on the CdTe core, resulting in an enhanced PL efficiency.  相似文献   

17.
ABSTRACT

The photoluminescence of aqueously synthesised core/shell CdTe/CdS quantum dots (QDs) was investigated. Two molar ratios (2.4 and 1.3) of thioglycolic acid (TGA) to Cd2+ were compared to determine the best synthesis conditions for high photoluminescent quantum yield (PLQY) and photostability. A difference in the PLQY of the CdTe/CdS QDs was observed when CdS shells were grown with different TGA/Cd2+ ratios. The difference in the observed PLQY was attributed to the quality of the passivation of the CdTe during the CdS shell growth. At TGA/Cd2+ ratio of 1.3, the CdS shell forms through homogeneous nucleation, which is limited by diffusion of growth material from the solution onto the QDs surface. Due to the lattice mismatch of CdTe and CdS, the core will experience coherence strain resulting in dislocation sites and surface defects between nucleation sites which can result in non-radiative trap states. When the TGA/Cd2+ ratio is 2.0, the CdS shell grows epitaxially, minimising the number of surface trap states. Finally, we observed that the fluorescence intermittency was supressed for CdTe QDs after UV light illumination, attributed to annealing of deep surface trap states by UV light.  相似文献   

18.
Microphotoluminescence (μ-PL) measurements were carried out to investigate the optical properties of single Cd0.6Zn0.4Te/ZnTe quantum dots (QDs) grown on Si (001) substrate by using molecular beam epitaxy. The high quality of single Cd0.6Zn0.4Te/ZnTe QDs is witnessed by resolution-limited emission, negligible background and absence of measurable spectral jitter or blinking. Polarization-dependent and power-dependent μ-PL spectroscopy measurements were performed to identify the exciton, the biexciton, and the charged exciton in the emission spectra of single QDs. Furthermore a weak linearly polarized line is observed on the low energy side of the neutral exciton and is ascribed to dark exciton recombination.  相似文献   

19.
We demonstrate a simple and efficient biosynthesis method to prepare easily harvested biocompatible cadmium telluride (CdTe) quantum dots (QDs) with tunable fluorescence emission using yeast cells. Ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirm that the CdTe QDs are formed via an extracellular growth and subsequent endocytosis pathway and have size-tunable optical properties with fluorescence emission from 490 to 560 nm and a cubic zinc blende structure with good crystallinity. In particular, the CdTe QDs with uniform size (2-3.6 nm) are protein-capped, which makes them highly soluble in water, and in situ bio-imaging in yeast cells indicates that the biosynthesized QDs have good biocompatibility. This work provides an economic and environmentally friendly approach to synthesize highly fluorescent biocompatible CdTe QDs for bio-imaging and bio-labeling applications.   相似文献   

20.
Zhang B  Gong X  Hao L  Cheng J  Han Y  Chang J 《Nanotechnology》2008,19(46):465604
In this paper, based on selecting the appropriate type of quantum dots (QDs), a novel method is developed to enhance the quantum yield (QY) of silica-coated QD nanoparticles (SQDNPs). The effect of varying types of QDs on the QY after silica encapsulation is systematically studied. The results show that QDs with appropriate structure and composition of shells can much better retain the initial QY after silanization. The seven-layered shell/core QDs with QY of 47.8% nearly completely retain the original QY and is the best type among six types of QDs for silica modification. In the aspect of shell composition, the CdS plays an important role for QY retention since the lattice mismatch between CdSe and CdS is lower than that of CdSe and ZnS. After the appropriate type of QDs is chosen for silica coating, the highly fluorescent SQDNPs are chemically modified with amine, thiol and carboxyl groups, and then labeled by antibodies for particle-based immunofluorescence assay. The results indicate that the SQDNPs-antibody bioconjugates are alternative fluorescent probes useful for biodetection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号