首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the unprecedented, novel and eco‐friendly method for the synthesis of three‐dimensional (3D) copper nanostructure having flower like morphology using leaf extract of Ficus benghalensis. The catalytic activity of copper nanoflowers (CuNFs) was investigated against methylene blue (MB) used as a modal dye pollutant. Scanning electron micrograph evidently designated 3D appearance of nanoflowers within a size range from 250 nm to 2.5 μm. Energy‐dispersive X‐ray spectra showed the presence of copper elements in the nanoflowers. Fourier‐transform infrared spectra clearly demonstrated the presence of biomolecules which is responsible for the synthesis of CuNFs. The catalytic activity of the synthesised CuNFs was monitored by ultraviolet–visible spectroscopy. The MB was degraded by 72% in 85 min on addition of CuNFs and the rate constant (k) was found to be 0.77 × 10−3 s−1. This method adapted for synthesis of CuNFs offers a valuable contribution in the area of nanomaterial synthesis and in water research by suggesting a sustainable and an alternative route for removal of toxic solvents and waste materials.Inspec keywords: catalysis, dyes, nanostructured materials, nanofabrication, scanning electron microscopy, X‐ray chemical analysis, copper, Fourier transform infrared spectra, visible spectra, ultraviolet spectra, molecular biophysicsOther keywords: catalytic degradation, methylene blue, biosynthesised copper nanoflowers, F. benghalensis leaf extract, three‐dimensional copper nanostructure synthesis, 3D copper nanostructure synthesis, flower like morphology, Ficus benghalensis leaf extract, modal dye pollutant, electron micrograph, 3D appearance, energy‐dispersive X‐ray spectra, copper elements, Fourier‐transform infrared spectra, biomolecules, ultraviolet‐visible spectroscopy, toxic solvent removal, waste materials, size 250 nm to 2.5 mum, Cu  相似文献   

2.
Background: Ovarian cancer is deadliest of fifth leading cause of death in women worldwide. This is due to advanced-stage disease rate associated with the development of chemoresistance. Hence, the current study emphasizes the process of synthesis of silver nanoparticles (AgNPs) from green chemistry method. Ficus krishnae is a perennial plant, native to India, used in folklore medicine to treat various diseases.

Objective: For the development of reliable, ecofriendly, less expensive process for the synthesis of AgNPs against bacterial and ovarian cancer.

Methodology: The synthesis of silver nanoparticles from stem bark of Ficus krishnae was carried out. The synthesized nanoparticles are subjected by UV-Vis spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and FTIR analysis. The antibacterial efficacy also determined by disc diffusion method, MIC, CFU and growth curve. In vitro cytotoxicity effect of aqueous extract and AgFK nanoparticle in ovarian cancer cell line by MTT assay was performed.

Results: The formation of AgNPs was confirmed by UV-VIS spectroscopic absorbance shown that peak at 435?nm. XRD photograph has indicated the face-centered cubic structure of the synthesized AgNPs. SEM study demonstrated that the size from 160 to 260?nm with interparticle distance, whereas shape is spherical. The particle size were ranging from 15 to 28?nm determined by XRD pattern. The antibacterial and cytotoxicity activity of this nanoparticle has showed a potential activity when compared with standards.

Conclusion: The present study confirms that the biosynthesized AgNPs from Ficus krishnae stem bark extract have a great affiance as antibacterial and anticancer agent.  相似文献   

3.
ABSTRACT

Here we report a simple, one-pot, inexpensive, and eco-friendly method for the synthesis of silver nanoparticles. The leaf extract of a medicinal plant Nervalia zeylanica was used as reducing and stabilizing agent for the synthesis of nanoparticles by microwave-assisted strategy. The nanoparticles show characteristic surface plasmon peak at 468?nm in UV–vis absorption spectrum. The involvement of phytochemicals in the reduction and stabilization of nanoparticles was confirmed by FTIR analysis. Using X-ray diffraction analysis, the crystalline nature of the nanoparticles was demonstrated. Transmission electron microscopic analysis shows that the nanoparticles were in spherical shape with average particle size of 34.2?nm. The antioxidant studies were performed by the 1,1-diphenyl-2-picryl hydrazyl method. The nanoparticles show excellent scavenging activities than the leaf extract. The IC50 values of silver nanoparticles and the leaf extract, respectively, were 15.20 and 92.83?µg?mL?1. The catalytic activities of synthesized nanoparticles were examined by using them in the reduction of organic dyes. The nanoparticles show excellent catalytic activities and follow pseudo-first-order kinetics. The antimicrobial activities of nanoparticles were analyzed by an agar well diffusion method against six microbial strains and found that the nanoparticles were highly toxic against all the tested microbial strains.  相似文献   

4.
《Materials Research Bulletin》2013,48(11):4531-4537
In this study, we demonstrate a green approach for the synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Rosmarinus officinalis under ambient conditions. The uniqueness of this method lies in its rapid synthesis within 15 min. The synthesized AgNPs were characterized using UV–vis, FTIR, XRD, FE-SEM coupled with EDX, TEM and AFM. The synthesized particles were found to be 14.20–42.42 nm with face centered cubic geometry. The functional group of flavonoids and terpenoids was largely identified by FTIR which was found to be responsible for the synthesis and stabilization of the AgNPs. Further, antibacterial efficacy of the biologically synthesized AgNPs was investigated by the standard method against Pseudomonas aeruginosa and Staphylococcus aureus. The results showed that the aqueous leaf extract mediated synthesized AgNPs is an excellent antibacterial agent against clinical pathogens.  相似文献   

5.
ABSTRACT

Silver nanoparticles synthesised using aqueous extract of Cocos nucifera (CN) mesocarp were evaluated for their photocatalytic activity under solar irradiation. The silver nanoparticles were synthesised by a green method of harnessing bioactive phytocomponents from the mesocarp of Cocos nucifera. Large-scale application of this process necessitates the manoeuvering of the process parameters for increasing the conversion of silver ions to nanoparticles. Process parameters influencing the morphological characteristics of silver nanoparticles such as precursor salt concentration and pH of the synthesis mixture were studied. The crystalline nanoparticles were characterised using UV-vis spectroscopy, XRD, FTIR, SEM and EDX analysis. CN extract and 5 mM silver nitrate solution at a ratio of 1:4 (v/v) in the synthesis mixture was found to be the optimum. Alkaline initial pH of the synthesis mixture was found to favour the synthesis of smaller sized monodispersed silver nanoparticles. Solar energy was harnessed for the photocatalytic degradation of Malachite green dye using silver nanoparticles obtained through the green synthesis method. Overall process aims at utilisation of naturally available resource for the synthesis of silver nanoparticles as well as the degradation of dyes using these nanoparticles, making it useful in the treatment of wastewater.  相似文献   

6.
Green synthesis of silver nanoparticles (AgNPs) is an interesting issue of the nanoscience and nanotechnology due to their unique properties. In the present study, Ginkgo biloba L. leaf extract was used to synthesise AgNPs. The effects of quantity of leaves, concentration of Ag nitrate (AgNO3), reaction temperature, and pH were studied to discover the optimal synthesis system. In addition, antifungal effect of AgNPs against Setosphaeria turcica was measured through inhibition zone method. The optimal biosynthesis system contained 15 g of leaf, 8 mM AgNO3, and 80°C at pH 9.0. Under mentioned conditions, the resulting synthesised NPs were nearly spherical, with an average size of 14 nm. In tests, AgNPs synthesised at different pH resulted in different inhibition zones, diameters increased gradually at pH from 3.0 to 11.0, while antifungal effect reached maximum at 9.0. Results of this study offer a new approach for biological control plant pathogenic fungi, and it has potential application for screening novel fungistats with high efficiency and low toxicity.Inspec keywords: antibacterial activity, silver, nanoparticles, nanobiotechnology, pHOther keywords: antifungal effect, green synthesised silver nanoparticles, Setosphaeria turcica, nanoscience, nanotechnology, Ginkgo biloba L. leaf extract, reaction temperature, pH, inhibition zone method, inhibition zones, mass 15 g, temperature 80 degC, size 14 nm, Ag  相似文献   

7.
Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high‐resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.Inspec keywords: antibacterial activity, silver, nanoparticles, nanomedicine, biochemistry, crops, transmission electron microscopy, Fourier transform infrared spectra, electrokinetic effects, organic compounds, particle size, plant diseases, microorganismsOther keywords: fungi, Aspergillus niger, size 68.5 nm to 116 nm, silver particles, phytoextract, amide functional groups, aldehydes, alcohols, Fourier transform infrared studies, zeta potential analyser, particle size, high‐resolution transmission electron microscopy, Stevia plant leaf extract, agricultural crops, antifungal effects, materials synthesis, Arachis hypogaea L, peanut, Zea mays L, maize, Oryza sativa L, rice, biochemical parameters, growth, germination, antifungal phytogenic silver nanoparticles, size dependent effects  相似文献   

8.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

9.
Microbial silver nanoparticles have been known to have bactericidal effects but the antimicrobial mechanism has not been clearly revealed. The use of microorganisms in the synthesis of nanoparticles emerges as an ecofriendly and exciting approach. Here we report on the extracellular synthesis method for the preparation of silver nanoparticles in water using the extract of Agaricus bisporus, a naturally occurring edible mushroom, as reducing and protecting agents. The silver nanoparticles were characterised by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) analysis. The synthesised silver nanoparticles showed antibacterial activity against the multi-drug resistant Gram positive and Gram negative bacterial pathogens.  相似文献   

10.
Biological methods for nanoparticle synthesis using microorganisms, enzymes, and plants or plant extracts have been suggested as possible ecofriendly alternatives to chemical and physical methods. In this paper, we report on the synthesis of nanostructured zinc oxide particles by both chemical and biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc nitrate and Aloe vera leaf extract. Greater than 95% conversion to nanoparticles has been achieved with aloe leaf broth concentration greater than 25%. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized by using UV-Vis spectrophotometer, FTIR, Photoluminescence, SEM, TEM and XRD analysis. SEM and TEM analysis shows that the zinc oxide nanoparticles prepared were poly dispersed and the average size ranged from 25 to 40 nm. The particles obtained have been found to be predominantly spherical and the particle size could be controlled by varying the concentrations of leaf broth solution.  相似文献   

11.
In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.  相似文献   

12.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   

13.
Synthesis of nanoparticles by using natural products as reducing and stabilizing agents have been widely used in various fields especially medicine, primarily because of its lower cost, simplicity, and less toxic byproducts. In the present work, silver nanoparticles (Ag NPs) were rapidly synthesized from silver nitrate in a green one-step synthesis by the aqueous extracts of Osage orange (Maclura pomifera) leaf as a reducing and stabilizing agent simultaneously. The effects of pH, extract quantity, and silver salt concentration were investigated to determine the optimum conditions of green synthesis of Ag NPs. The synthesized Ag NPs were characterized by different techniques including UV–Visible (UV–Vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform Infrared (FT-IR) Spectroscopy, and Transmission Electron Microscopy (TEM). The Ag NPs showed surface plasmon resonance centered at 415?nm. The XRD pattern and TEM analysis revealed spherical, stable, and uniform Ag NPs with the average particle size of about 12?nm. The FT-IR spectroscopy showed that mainly hydroxyl functional groups, as both the reducing and stabilizing agent are responsible for silver nanoparticles synthesis. The antimicrobial activity of the synthesized Ag NPs showed a significant microbicidal effect on all clinical isolates especially, Gram-negative bacteria and fungi. These results suggest that such stable and uniform Ag NPs can be synthesized rapidly and simply for clinical as well as pharmaceutical applications.  相似文献   

14.
Recently the use of medicinal plants potential in the production of nanoparticles has received serious attention. Here, the main component of Camellia sinensis L. (green tea) extract was detected by spectroscopy and the optimal conditions were determined for their performance in green synthesis of silver nanoparticles at room temperature. Epigallocatechin gallate was identified as the dominant component in the extract as determined by spectroscopy, and it was established that its oxidation was a function of the solution pH. Transmission electron microscopy, dynamic light scattering, and visible absorption spectroscopy (UV‐Vis) confirmed the reduction in silver ions to silver nanoparticles (Ag NPs). Controlling over Ag NPs shape and narrow size distribution was achieved with 10 ml green tea leaf extract solution and in different reaction pH. Spherical colloidal Ag NPs with well‐defined hydrodynamic diameters (with average hydrodynamic size of 27.9–50.2 nm) were produced. Silver nitrate concentrations used in this study were lower than that of reported in similar works, and synthesis efficiency was also higher. Nanoparticles were perfectly spherical and their uniformity, compared to similar studies, was much higher. These NPs showed higher degree of stability and were aqueously stable for >10 months in dark glasses at 4°C.Inspec keywords: hydrodynamics, nanoparticles, particle size, pH, visible spectra, ultraviolet spectra, reduction (chemical), transmission electron microscopy, silver, microorganisms, nanofabrication, colloids, biomedical materials, nanomedicine, drug delivery systemsOther keywords: transmission electron microscopy, dynamic light scattering, visible absorption spectroscopy, silver ions, narrow size distribution, silver nitrate concentrations, green synthesis, medicinal plants, solution pH, green tea leaf, hydrodynamic size, silver nanoparticles, Camellia sinensis L, drug delivery, reduction component, epigallocatechin gallate, UV‐visible spectra, hydrodynamic diameters, spherical colloidal Ag NPs, temperature 4.0 degC, Ag  相似文献   

15.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

16.
This study reports synthesis and characterisation of silver nanoparticles and their effect on antifungal efficacy of common agricultural fungicides. Silver nanoparticles were synthesised using biological and chemical reduction methods employing Elettaria cardamomum leaf extract and sodium citrate, respectively. Nanoparticles were then characterised using UV–Visible spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). While XRD assigned particles size of 31.86 nm for green and 41.91 nm for chemical silver nanoparticles with the help of the Debye–Scherrer formula, DLS specified monodisperse nature of both suspensions. Nanoparticles were tested individually and in combination with fungicides (carbendazim, mancozeb, and thiram) against fungal phytopathogens. Silver nanoparticles exhibited good antifungal activity and minimum inhibitory concentration (MIC) was observed in the range of 8–64 µg/ml. Also, they positively influenced the efficacy of fungicides. The mean MIC value (mean ± SD) for combination of all three fungicides with green AgNPs was 1.37 ± 0.6 µg/ml and for chemical AgNPs was 1.73 ± 1.0 µg/ml. Hence, it could be concluded that green AgNPs performed better than chemical AgNPs. Synergy was observed between green AgNPs and fungicides against Fusarium oxysporum. In conclusion, this study reports synthesis of monodisperse silver nanoparticles which serve as efficient antifungal agents and also enhance the fungicidal action of reported agricultural fungicides in combination studies.Inspec keywords: X‐ray diffraction, reduction (chemical), visible spectra, ultraviolet spectra, microorganisms, particle size, nanomedicine, nanofabrication, nanoparticles, agrochemicals, antibacterial activity, transmission electron microscopy, silver, light scattering, scanning electron microscopyOther keywords: antifungal effect, green silver nanoparticles, chemically synthesised silver nanoparticles, carbendazim, mancozeb, thiram, antifungal efficacy, common agricultural fungicides, biological reduction methods, chemical reduction methods, transmission electron microscopy, XRD assigned particles size, chemical silver nanoparticles, green AgNPs, chemical AgNPs, monodisperse silver nanoparticles, antifungal activity, agricultural fungicides, Elettaria cardamomum leaf extract, sodium citrate, UV‐visible spectroscopy, X‐ray diffraction, dynamic light scattering, size 31.86 nm, size 41.91 nm  相似文献   

17.
The present work reports the green synthesis of silver nanoparticles, using Beta vulgaris peel extract with a subsequent investigation on the size distribution and surface structure of nanoparticles formed under various process conditions. The green-chemical reduction mechanism of silver ions to nanoparticles by the active organic functional groups present in the extract was characterized, using the respective spectroscopic techniques. The effects of various process parameters, including induced intraparticle ripening, were attributed to the controlled formation of anisotropic silver nanoparticles within the supporting matrix of the extract. The plasmon absorption and resonance scattering properties were expected to be favourable for small and larger size nanoparticles (below 25 nm and above 75 nm) respectively, which was considered to be an indicative aspect for synthesizing nanoparticles of narrow size distribution. The zeta potential and dynamic light scattering (DLS) results suggest the good stability and mono-dispersed size distribution of the silver nanoparticles. The transmission electron microscope, selective area electron diffraction (SAED) and X-ray diffraction studies infer that the nanoparticles formed were spherical/quasi-spherical in shape, which primarily exhibited a face centred cubic crystal (FCC) structure. The green-chemical reduction of organic phases in the extract (especially amine (NH2) groups) as reflected through shifts observed in the Fourier-transform infra red (FTIR) peaks, reveal the possible interaction of the organic molecules with the silver ions in the effective formation, surface modification and stabilization of the silver nanoparticles.  相似文献   

18.
Present study reports a green chemistry approach for the biological synthesis of gold nanoparticles by using the leaf extract of Coleus amboinicus Lour. The nanoparticles were structurally characterized by UV–Vis spectroscopy, XRD, TEM and SAED analyses. Elemental and vibrational analyses were done with EDAX and FT–IR spectroscopies respectively. Bioreduction of gold ions by C. amboinicus leaf extract resulted in the synthesis of spherical, truncated triangle, triangle, hexagonal and decahedral nanoparticles. These nanoparticles showed an absorption peak at 536 nm in UV–Vis spectrum corresponding to the plasmon resonance of gold nanoparticles. The size of gold nanoparticles ranged from 4.6 to 55.1 nm. FT–IR spectrum confirmed the involvement of aromatic amines, amide (II) groups and secondary alcohols in capping and reduction of gold nanoparticles. Extracellular synthesis of gold nanoparticles is a simple, cheap and environmentally benign alternative to physical and chemical procedures.  相似文献   

19.
Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton–SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost‐effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.Inspec keywords: cotton, health care, nanoparticles, coatings, silver, fibres, nanofabrication, scanning electron microscopy, X‐ray chemical analysis, atomic emission spectroscopy, plasma applications, microorganisms, biotechnologyOther keywords: biocompatible antimicrobial cotton fibre coating, healthcare industry, bioorganic‐coated silver nanoparticle synthesis, biogenically fabricated silver nanoparticle, SNP, leaf extraction, Vitex negundo Linn, diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray spectrometry, inductively coupled plasma atomic emission spectrometry, uniformly distributed spherical agglomerate, antimicrobial assay, pathogenic bacteria, fungi, Ag  相似文献   

20.
In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well‐appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano‐Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synthesis of AgNCs was accomplished by utilizing the leaf extract of Salacia mulbarica (SM). The preparation of SM‐AgNCs was developed by estimating surface plasmon resonance peak around 449 nm by using a UV–Visible spectrophotometer. The effect of phytochemicals in SM leaf extract on the development of stable SM‐AgNCs was confirmed by FTIR spectroscopy. The size of the fabricated SM‐AgNCs was estimated by dynamic light scattering and zeta‐sizer analysis and the morphology of the SM‐AgNCs was examined by transmission electron microscopy. The presence of clusters of Ag particles in the prepared SM‐AgNCs was recognized by energy dispersion X‐ray analysis. The results show that saponins, phytosterols, and phenolic compounds present in plant extract may play a great part in developing the SM‐AgNCs in their specialized particles. The succeeded SM‐AgNCs shows incredible anti‐bacterial action towards Escherichia coli and Bacillus subtilis. In‐light of the antibacterial study, these SM‐AgNCs were analyzed with calf thymus‐DNA and found significant damage to the strand of thymus‐DNA.Inspec keywords: visible spectra, surface plasmon resonance, transmission electron microscopy, DNA, nanofabrication, particle size, X‐ray chemical analysis, ultraviolet spectra, molecular biophysics, nanomedicine, microorganisms, nanoparticles, silver, X‐ray diffraction, antibacterial activity, Fourier transform infrared spectra, biomedical materialsOther keywords: stable SM‐AgNCs, silver nanoparticles, ct‐DNA damage, metallic nanoparticles, silver nanoclusters, Salacia mulbarica leaf extract, reactive oxygen species, DNA fragmentation, surface plasmon resonance, UV‐Visible spectrophotometer, Fourier transform infrared spectroscopy, dynamic light scattering, Zeta‐sizer analysis, transmission electron microscopy, energy dispersive X‐ray analysis, saponins, phytosterols, phenolic compounds, plant extract, Escherichia coli, Bacillus subtilis, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号