首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, aluminium alloy AA2024-T3 thin sheets were joined by the Friction Stir Welding – FSW – process. Butt joints were obtained in 1.6 mm sheets, using an advancing speed of 700 mm/min. These joints were characterised by optical, scanning electron microscopy, tensile and fatigue mechanical tests. The results showed that the resulting microstructure is free of defects and the tensile strength of the welded joints is up to 98% of the base-metal strength. Fatigue tests result indicates an equivalent stress intensity factor (kt) of approximately 2.0 for the welded samples. Consequently, the FSW process can be advantageous compared to conventional riveting for airframe applications.  相似文献   

2.
This study evaluated the mechanical properties of friction stir welded and post-heat-treated Inconel 625 alloy. Friction stir welding (FSW) was performed at rotation and traveling speeds of 200 rpm and 100 mm/min, respectively; heat treatment was carried out after welding at 700 °C for 100 h in vacuum. As a result, the application of FSW on Inconel 625 alloy led to the grain refinement in the stir zone, which resulted in increase in mechanical properties than those of the base material. Especially, applying heat treatment after FSW led to the improvement of mechanical properties of the welds; microhardness and tensile strength increased by more than 30% and 50%, respectively, as compared to FSW alone.  相似文献   

3.
In this study, the friction stir butt welding of 2-mm-thick high nitrogen-containing stainless steel (HNS; Ni-free austenitic stainless steel containing 1 mass% nitrogen) plates was performed using a load-controlled friction stir welding (FSW) machine with a Si3N4-based tool at various welding speeds, i.e., 50 mm/min, 100 mm/min, 200 mm/min and 300 mm/min, and a constant tool rotating speed of 400 rpm. To determine the optimum welding conditions to create reliable HNS FSW joints, the effect of the heat input on the mechanical properties of the HNS FSW joints was studied. The mechanical properties were evaluated by the Vickers hardness test and the tensile strength test. Full-penetrated and defect-free butt welded joints were successfully produced, under all the applied welding conditions. The stir zones consisted of very fine grained structures and showed an increase in the Vickers hardness. These joints also showed a higher tensile strength and yield strength than the base metal. In particular, the FSW welds obtained at a welding speed of 100 mm/min, which showed the best mechanical properties, had a relatively higher Vickers hardness, which indicates a good relationship between the welding parameter (heat input) and the hardness profile due to the microstructure refinements. It was estimated that these welding conditions were optimal, and under these conditions both grain growth and α-phase formation were prevented.  相似文献   

4.
Fatigue life predictions using fracture mechanics methods   总被引:2,自引:0,他引:2  
In the present work, a simple engineering approach which is based on a relatively solid background and which is checked against fatigue test data for various test conditions was developed: it may provide a practical and reliable basis for the analysis of structures under in-service loading conditions, in the presence of previous corrosion attack, or in the presence of a residual stress field, by using widespread fracture mechanics software. In particular, the approach was checked against an experimental program which consists of the following fatigue tests: base and friction stir welded (FSW) material under constant amplitude loading at different loading ratios (R = 0.1, 0.5, −1); pre-corroded base and FSW material under constant amplitude loading at load ratio R = 0.1; centre hole FSW specimens under the standardised variable amplitude loading spectrum FALSTAFF. Moreover, from the literature fatigue experiments under FALSTAFF of cold expanded as well as not cold expended holes were also used to validate the approach. The predictions were performed with the last version of AFGROW and NASGRO 3.0 software.  相似文献   

5.
Graphene oxide (GO) sheets prepared by chemical exfoliation were spread at the air-water interface and transferred to silicon substrates by Langmuir-Blodgett technique as closely spaced monolayers of 20-40 μm size. Hydrazine exposure followed by annealing in vacuum and argon ambient results in the formation of reduced graphene oxide (RGO) monolayers, without significantly affecting the overall morphology of the sheets. The monolayer character of both GO and RGO sheets was ascertained by atomic force microscopy. X-ray photoelectron spectroscopy supported by Fourier transform infrared spectroscopy revealed that the reduction process results in a significant decrease in oxygen functionalities, accompanied by a substantial decrease in the ratio of non-graphitic to graphitic (sp2 bonded) carbon in the monolayers from 1.2 to 0.35. Raman spectra of GO and RGO monolayers have shown that during the reduction process, the G-band shifts by 8-12 cm− 1 and the ratio of the intensities of D-band to G-band, I(D)/I(G) decreases from 1.3 ± 0.3 to 0.8 ± 0.2, which is in tune with the smaller non-graphitic carbon content of RGO monolayers. The significant decrease in I(D)/I(G) has been explained by assuming that substantial order is present in precursor GO monolayers as well as RGO monolayers obtained by solid state reduction.  相似文献   

6.
Graphene, which possesses unique nanostructure and excellent properties, is considered as a low cost alternative to carbon nanotubes in nanocomposites. In this study, we present a simple in situ approach for the deposition of cobalt (Co) nanoparticles onto surfaces of graphene sheets by hydrazine hydrate reduction. The as-synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM) and thermogravimetry and differential scanning calorimetry. It was shown that the as-formed Co nanoparticles were densely and homogeneously deposited on the surfaces of the graphene sheets and as a result, the restacking of the as-reduced graphene sheets was effectively inhibited. Magnetic studies reveal that the graphene/Co nanocomposite displays ferromagnetic behavior with saturation magnetizations of 53.4 emu g−1, remanent magnetization of 6.0 emu g−1 and coercivity of 226 Oe at room temperature, which make it promising for practical applications in future nanotechnology.  相似文献   

7.
Magnesium alloy ME20 sheets were produced by accumulative roll bonding (ARB) up to 8 cycles. The rolling microstructure was significantly refined during the first 2 cycles and remained homogeneous up to 6 cycles. After 8 cycles (ε ~ 6.4) the homogeneous equiaxed microstructure was replaced by a very fine shear band microstructure. With increasing ARB cycles, the texture intensity of basal poles decreased leading to a higher sheet tensile strength but with decreasing ductility.  相似文献   

8.
D. Tashima  A. Sakamoto  T. Sakoda 《Vacuum》2008,83(3):695-698
In this work, an activated carbon sheet was modified, to improve capacitance and energy density of electric double layer capacitors (EDLCs). Surfaces were treated with plasma for selected times of 1, 5, 10, 20, and 30 min. The plasma source was a DC glow discharge in argon gas. The pressure was 20 Pa and the distance between positive and negative electrodes was 20 mm. DC power was 70 W. The activated carbon sheets were set up so that the sheets were covered with the DC glow discharge. The results showed that plasma treatment led to roughening of the surface of the activated carbon sheets which became more pronounced for increased time. This was attributed to an increased surface area caused by argon plasma etching. For discharge times greater than 10 min, contamination from sputtered PTEE in the chamber appeared to have a smoothing effect and led to a reduction of the measured surface area. Capacitance of the EDLCs cells with the activated carbon sheets after 1 min plasma surface treatment was increased by 2% compared to EDLCs cells with the original activated carbon sheet. The results have shown that the modification by plasma treatment of activated carbon sheets is a suitable technique for EDLCs used in high current applications.  相似文献   

9.
Underwater friction stir welding (underwater FSW) has been demonstrated to be available for the strength improvement of normal FSW joints. In the present study, a 2219 aluminum alloy was underwater friction stir welded at a fixed rotation speed of 800 rpm and various welding speeds ranging from 50 to 200 mm/min in order to clarify the effect of welding speed on the performance of underwater friction stir welded joint. The results revealed that the precipitate deterioration in the thermal mechanically affected zone and the heat affected zone is weakened with the increase of welding speed, leading to a narrowing of softening region and an increase in lowest hardness value. Tensile strength firstly increases with the welding speed but dramatically decreases at the welding speed of 200 mm/min owing to the occurrence of groove defect. During tensile test, the joint welded at a lower welding speed is fractured in the heat affected zone on the retreating side. While at higher welding speed, the defect-free joint is fractured in the thermal mechanically affected zone on the advancing side.  相似文献   

10.
However, there are many works on annealing process of SPDed non-ferrous metals, there are limit works on annealing process of SPDed low carbon steel. Therefore, in this study the annealing responses after constrained groove pressing (CGP) of low carbon steel sheets have been investigated. The sheets are subjected to severe plastic deformation at room temperature by CGP method up to three passes. Nano-structured low carbon steel sheets produced by severe plastic deformation are annealed at temperature range of 100-600 °C for 20 min. The changes of their microstructures after deformation and annealing are studied by optical microscopy. The effects of large strain and annealing temperature on microstructure, strength and hardness evolutions of the nano-scale grained low carbon steel are examined. The results show that annealing phenomena can effectively improve the elongation of SPDed sheets with preserving the hardness and mechanical strength. Also, the thermal stability of microstructure and mechanical properties can be observed through annealing temperatures up to 400 °C and temperature of 400 °C is achieved as an optimum annealing temperature in which both strength and elongation are increased and hardness inhomogeneity of the sheet is minimum. Annealing at temperatures of higher than 400 °C leads to abnormal grain growth.  相似文献   

11.
This paper investigates the influence of exfoliated nano-structures on sandwich composites under impact loadings. A set of sandwich composites plates made of fiberglass/nano-modified epoxy face sheets and polystyrene foams was prepared. The core was 25 mm thick and the face sheets were made of eight layers of woven fabric glass fibers and nano-modified epoxy (≈0.8 mm of thickness). The epoxy system was bisphenol A resin and an amine hardener. The fiber volume fraction used was around 65%, while the nanoclay content varied from 0 wt.% to 10 wt.%. The nanoclay used was Cloisite 30B from Southern Clay. The sandwich panels were submitted to low-velocity impact tests with energies from 5 J to 75 J. Two sets of experiments were performed, i.e. high velocity + low mass and low velocity + high mass. Damage caused by the two groups of experiments and peak forces measured were dissimilar. The results show that the addition of 5 wt.% of nanoclay lead to a more efficient energy absorption. The failure modes were also analyzed, and they seems to be affected by the nanoclay addition to face sheets.  相似文献   

12.
Weld quality is a major challenge for resistance spot welding of multiple stacks of steel sheets. Because of the differences in mechanical and physical properties of steel sheets and the sheet gage variation, the contact state between sheets and welding current flow throughout the stack joint is complicated. As a result, discrepant weld sizes at the faying interfaces become an issue. In this study, a coupled thermal–mechanical/thermal–electrical incremental model has been developed to reasonably predict the weld nugget formation process of resistance spot welding of a sheet stack made of 0.6 mm thick galvanized SAE1004+1.8 mm thick galvanized SAE1004+1.4 mm thick galvanized dual-phase (DP600) steel using published thermal, electrical, and mechanical properties. It was found that the weld nugget on the faying interface of DP600 forms earlier than that on the other interface, which agrees well with the experimental results. Based on the coupled model, the effects of the sheet gage combination and steel grade combination were examined. The results show that, for a multiple stacks of steel sheets SAE1004 + SAE1004 + DP600, the critical ratio of sheet thickness between the top and bottom sheets is approximately 1:3. The model could provide an important guidance in the selection of the welding variables, sheet gage and steel grade to meet the weld quality of steel component.  相似文献   

13.
Ti-Al-Zr-Fe titanium alloy sheets with thickness of 4 mm were welded using laser beam welding (LBW) and laser-MIG hybrid welding (LAMIG) methods. To investigate the influence of the methods difference on the joint properties, optical microscope observation, microhardness measurement and mechanical tests were conducted. Experimental results show that the sheets can be welded at a high speed of 1.8 m/min and power of 8 kW, with no defects such as, surface oxidation, porosity, cracks and lack of penetration in the welding seam. In addition, all tensile test specimens fractured at the parent metal. Compared with the LBW, the LAMIG welding method can produce joints with higher ductility, due to the improvement of seam formation and lower microhardness by employing a low strength TA-10 welding wire. It can be concluded that LAMIG is much more feasible for welding the Ti-Al-Zr-Fe titanium alloy sheets.  相似文献   

14.
Wrought aluminum sheets with thickness of 13 mm were square butt-welded by friction stir welding (FSW) and gas tungsten arc welding (GTAW) methods. Corrosion behavior of the welding zone was probed by Tafel polarization curve. Optical metallography (OM) and scanning electron microscopy together with energy dispersive spectroscopy (SEM-EDS) were used to determine morphology and semi-quantitative analysis of the welded zone. FSW resulted in equiaxed grains of about 1–2 μm, while GTAW caused dendritic structure of the welded region. Resistance to corrosion was greater for the FSW grains than the GTAW structure. In both cases, susceptibility to corrosion attack was greater in the welded region than the base metal section. T6 heat treatment resulted in shifting of the corrosion potential towards bigger positive values. This effect was stronger in the welded regions than the base metal section.  相似文献   

15.
LaFeTeO6 was prepared by solid state reaction of La2O3, Fe2O3 and TeO2 in 1:1:2 molar ratios and characterized by powder X-ray diffraction, thermogravimetry and magnetometry. The detailed crystal structure analysis was carried out by Rietveld refinement. LaFeTeO6 crystallizes in a trigonal lattice with unit cell parameters: a = 5.2049(1) Å and c = 10.3457(2) Å, V = 242.73(2) Å3. The crystal structure is built from sheets of the edge shared FeO6 and TeO6 octahedra stacked along the c-axis. These sheets are connected together by La3+ ions. Thermogravimetric analysis of the compound showed it to be thermally stable up to 1323 K and continuous loss of TeO2 was observed above 1323 K leading to the formation of LaFeO3. High temperature XRD studies revealed a normal expansion behavior of the compound. Temperature and field dependent magnetization of LaFeTeO6 showed paramagnetic behavior in the temperature range of 3-300 K. The effective magnetic moment per Fe3+ ion (5.14 μB) indicates the high spin d5 state of Fe3+ ion.  相似文献   

16.
G. Hattenberger 《低温学》2005,45(6):404-407
The Kapitza resistance and the thermal conductivity of type A Mylar sheets in the temperature range between 1.4 and 2.1 K have been determined. Four sheets with varying thickness from 37 μm to 255 μm, have been tested in steady-state condition. For a small temperature difference (10-30 mK) and heat flux density smaller than 30 Wm−2, the total thermal resistance of the sheet is determined as a function of sheet thickness and bath temperature. The Kapitza resistance is given by RK = (1.28 ± 0.08)T−3 × 10−3 Km2 W−1, and the thermal conductivity, κ = [(8.83 ± 0.75) + (11.73 ± 0.43) × T] × 10−3 Wm−1 K−1.  相似文献   

17.
Langmuir-Blodgett (LB) films of azobenzene dye of 2-hydroxyl-3-(4-methoxyl)-naphthanilide-azodiphenyl (AS-RL) and its hybrid films with behenic acid (BA) and octadecylamine (ODA) were investigated by tapping mode atomic force microscopy and ultraviolet visible light absorption spectroscopy. Wavy line-shaped or fingerprint-like dye aggregates were observed in the pure dye LB films. BA and ODA were used to modulate and control the structure of the dye aggregates and different patterns resulted in changing the molar ratio of dye molecules in the composites films, such as long lines (AS-RL/BA = 1:2), sheets (AS-RL/ODA = 1:2), wide lines (AS-RL/ODA = 1:1), and ordered lines (AS-RL/ODA = 2:1).  相似文献   

18.
We report the low-temperature synthesis of thin graphite sheets using a hybrid chemical vapor deposition (HCVD) system that combines plasma and thermal CVD (TCVD). Electron beam deposited Ni films were used as catalytic substrates, and methane was used as a carbon feedstock. The quartz tube was into two regions: core plasma region for efficient dissociation of methane and a TCVD region for thermal synthesis, respectively. After the syntheses at different TCVD temperatures from 550 °C to 900 °C, as-grown films were transferred to transparent polymeric substrates to apply as flexible conductive electrodes. Finally, it was found that thin graphite sheets consisting of ~ 15 graphene layers were synthesized at 600 °C using the HCVD system and could be applicable as transparent conductive films.  相似文献   

19.
CaSiO3/high-density polyethylene (HDPE) composites with flexibility and biocompatibility were prepared by a new surface loading method. CaSiO3 powder was synthesized by coprecipitation method with heating at 1300 °C for 2 h. The obtained α-CaSiO3 powder was sieved to 45-75 μm (sample M) and 75-150 μm (sample C). Fine powder sample (sample F) was prepared by grinding the powder being the average particle size of 2.9 μm. These powders were sprinkled on the melted HDPE sheets heated at 160, 180 and 200 °C. The amounts of sprinkled powder were only <0.1 vol.% but the ratios of surface coverage area were >50% in all the samples. Apatite formation in simulated body fluid (SBF) was observed by soaking for 5 days in sample F while within 1 day in samples M and C. The sample M retained flexible properties of HDPE together with excellent biocompatible properties.  相似文献   

20.
The main objective of the present work is to predict the forming limit of friction stir welded (FSW) sheets made of AA 6061T6, having different weld orientations, weld locations, and made at two different welding speeds. The predicted forming limit curves (FLCs) are validated with experimental FLCs. The thickness gradient based necking criterion (TGNC) and major strain‐rate ratio based necking criterion (MSRC) are used to predict the forming limit. The significance of single zone model and double zone model in FLC prediction is discussed. A decrease in hardness is witnessed in the weld zone as compared to base material. With increase in shoulder diameter and decrease in rotational speed, hardness has improved in the weld zone. The forming limit predictions of un‐welded sheets and FSW sheets coincide well with experimental results. The predicted FLCs of FSW sheets from TGNC and MSRC are equally accurate as compared to experimental FLCs in all the weld locations. Both TGNC and MSRC predict almost the same forming limit in 90° weld orientation, while TGNC showed better prediction in 45° weld orientation. FSW sheets with double zone models show better prediction accuracy than single zone models in most of the cases, except in the case of weld at centre location and at longitudinal orientation. There is only slight deviation between single zone and double zone model predictions. The failure location and failure pattern predictions are also agreeing well with the experimental FLCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号